Metamath Proof Explorer


Theorem uobeq

Description: If a full functor (in fact, a full embedding) is a section of a functor (surjective on objects), then the sets of universal objects are equal. (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Hypotheses uobeq.b B = Base D
uobeq.i I = id func D
uobeq.x φ X B
uobeq.f φ F C Func D
uobeq.k φ K D Full E
uobeq.g φ K func F = G
uobeq.y φ 1 st K X = Y
uobeq.n φ L func K = I
uobeq.l φ L E Func D
Assertion uobeq Could not format assertion : No typesetting found for |- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 uobeq.b B = Base D
2 uobeq.i I = id func D
3 uobeq.x φ X B
4 uobeq.f φ F C Func D
5 uobeq.k φ K D Full E
6 uobeq.g φ K func F = G
7 uobeq.y φ 1 st K X = Y
8 uobeq.n φ L func K = I
9 uobeq.l φ L E Func D
10 19.42v Could not format ( E. m ( ph /\ z ( F ( C UP D ) X ) m ) <-> ( ph /\ E. m z ( F ( C UP D ) X ) m ) ) : No typesetting found for |- ( E. m ( ph /\ z ( F ( C UP D ) X ) m ) <-> ( ph /\ E. m z ( F ( C UP D ) X ) m ) ) with typecode |-
11 fvexd Could not format ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) e. _V ) : No typesetting found for |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) e. _V ) with typecode |-
12 7 adantr Could not format ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( ( 1st ` K ) ` X ) = Y ) : No typesetting found for |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( ( 1st ` K ) ` X ) = Y ) with typecode |-
13 relfunc Rel D Func E
14 fullfunc D Full E D Func E
15 14 5 sselid φ K D Func E
16 1st2nd Rel D Func E K D Func E K = 1 st K 2 nd K
17 13 15 16 sylancr φ K = 1 st K 2 nd K
18 15 func1st2nd φ 1 st K D Func E 2 nd K
19 9 func1st2nd φ 1 st L E Func D 2 nd L
20 15 9 cofu1st2nd φ L func K = 1 st L 2 nd L func 1 st K 2 nd K
21 20 8 eqtr3d φ 1 st L 2 nd L func 1 st K 2 nd K = I
22 2 18 19 21 cofidfth φ 1 st K D Faith E 2 nd K
23 df-br 1 st K D Faith E 2 nd K 1 st K 2 nd K D Faith E
24 22 23 sylib φ 1 st K 2 nd K D Faith E
25 17 24 eqeltrd φ K D Faith E
26 5 25 elind φ K D Full E D Faith E
27 26 adantr Could not format ( ( ph /\ z ( F ( C UP D ) X ) m ) -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) : No typesetting found for |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) with typecode |-
28 6 adantr Could not format ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( K o.func F ) = G ) : No typesetting found for |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( K o.func F ) = G ) with typecode |-
29 eqidd Could not format ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) = ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) ) : No typesetting found for |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) = ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) ) with typecode |-
30 simpr Could not format ( ( ph /\ z ( F ( C UP D ) X ) m ) -> z ( F ( C UP D ) X ) m ) : No typesetting found for |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> z ( F ( C UP D ) X ) m ) with typecode |-
31 12 27 28 29 30 uptrai Could not format ( ( ph /\ z ( F ( C UP D ) X ) m ) -> z ( G ( C UP E ) Y ) ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) ) : No typesetting found for |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> z ( G ( C UP E ) Y ) ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) ) with typecode |-
32 breq2 Could not format ( n = ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) -> ( z ( G ( C UP E ) Y ) n <-> z ( G ( C UP E ) Y ) ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) ) ) : No typesetting found for |- ( n = ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) -> ( z ( G ( C UP E ) Y ) n <-> z ( G ( C UP E ) Y ) ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) ) ) with typecode |-
33 11 31 32 spcedv Could not format ( ( ph /\ z ( F ( C UP D ) X ) m ) -> E. n z ( G ( C UP E ) Y ) n ) : No typesetting found for |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> E. n z ( G ( C UP E ) Y ) n ) with typecode |-
34 33 exlimiv Could not format ( E. m ( ph /\ z ( F ( C UP D ) X ) m ) -> E. n z ( G ( C UP E ) Y ) n ) : No typesetting found for |- ( E. m ( ph /\ z ( F ( C UP D ) X ) m ) -> E. n z ( G ( C UP E ) Y ) n ) with typecode |-
35 10 34 sylbir Could not format ( ( ph /\ E. m z ( F ( C UP D ) X ) m ) -> E. n z ( G ( C UP E ) Y ) n ) : No typesetting found for |- ( ( ph /\ E. m z ( F ( C UP D ) X ) m ) -> E. n z ( G ( C UP E ) Y ) n ) with typecode |-
36 19.42v Could not format ( E. n ( ph /\ z ( G ( C UP E ) Y ) n ) <-> ( ph /\ E. n z ( G ( C UP E ) Y ) n ) ) : No typesetting found for |- ( E. n ( ph /\ z ( G ( C UP E ) Y ) n ) <-> ( ph /\ E. n z ( G ( C UP E ) Y ) n ) ) with typecode |-
37 fvexd Could not format ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) e. _V ) : No typesetting found for |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) e. _V ) with typecode |-
38 7 adantr Could not format ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( ( 1st ` K ) ` X ) = Y ) : No typesetting found for |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( ( 1st ` K ) ` X ) = Y ) with typecode |-
39 26 adantr Could not format ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) : No typesetting found for |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) with typecode |-
40 6 adantr Could not format ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( K o.func F ) = G ) : No typesetting found for |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( K o.func F ) = G ) with typecode |-
41 3 adantr Could not format ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> X e. B ) : No typesetting found for |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> X e. B ) with typecode |-
42 4 adantr Could not format ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> F e. ( C Func D ) ) : No typesetting found for |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> F e. ( C Func D ) ) with typecode |-
43 eqidd Could not format ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) = ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) ) : No typesetting found for |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) = ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) ) with typecode |-
44 simpr Could not format ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> z ( G ( C UP E ) Y ) n ) : No typesetting found for |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> z ( G ( C UP E ) Y ) n ) with typecode |-
45 38 39 40 1 41 42 43 44 uptrar Could not format ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> z ( F ( C UP D ) X ) ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) ) : No typesetting found for |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> z ( F ( C UP D ) X ) ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) ) with typecode |-
46 breq2 Could not format ( m = ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) -> ( z ( F ( C UP D ) X ) m <-> z ( F ( C UP D ) X ) ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) ) ) : No typesetting found for |- ( m = ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) -> ( z ( F ( C UP D ) X ) m <-> z ( F ( C UP D ) X ) ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) ) ) with typecode |-
47 37 45 46 spcedv Could not format ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> E. m z ( F ( C UP D ) X ) m ) : No typesetting found for |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> E. m z ( F ( C UP D ) X ) m ) with typecode |-
48 47 exlimiv Could not format ( E. n ( ph /\ z ( G ( C UP E ) Y ) n ) -> E. m z ( F ( C UP D ) X ) m ) : No typesetting found for |- ( E. n ( ph /\ z ( G ( C UP E ) Y ) n ) -> E. m z ( F ( C UP D ) X ) m ) with typecode |-
49 36 48 sylbir Could not format ( ( ph /\ E. n z ( G ( C UP E ) Y ) n ) -> E. m z ( F ( C UP D ) X ) m ) : No typesetting found for |- ( ( ph /\ E. n z ( G ( C UP E ) Y ) n ) -> E. m z ( F ( C UP D ) X ) m ) with typecode |-
50 35 49 impbida Could not format ( ph -> ( E. m z ( F ( C UP D ) X ) m <-> E. n z ( G ( C UP E ) Y ) n ) ) : No typesetting found for |- ( ph -> ( E. m z ( F ( C UP D ) X ) m <-> E. n z ( G ( C UP E ) Y ) n ) ) with typecode |-
51 relup Could not format Rel ( F ( C UP D ) X ) : No typesetting found for |- Rel ( F ( C UP D ) X ) with typecode |-
52 releldmb Could not format ( Rel ( F ( C UP D ) X ) -> ( z e. dom ( F ( C UP D ) X ) <-> E. m z ( F ( C UP D ) X ) m ) ) : No typesetting found for |- ( Rel ( F ( C UP D ) X ) -> ( z e. dom ( F ( C UP D ) X ) <-> E. m z ( F ( C UP D ) X ) m ) ) with typecode |-
53 51 52 ax-mp Could not format ( z e. dom ( F ( C UP D ) X ) <-> E. m z ( F ( C UP D ) X ) m ) : No typesetting found for |- ( z e. dom ( F ( C UP D ) X ) <-> E. m z ( F ( C UP D ) X ) m ) with typecode |-
54 relup Could not format Rel ( G ( C UP E ) Y ) : No typesetting found for |- Rel ( G ( C UP E ) Y ) with typecode |-
55 releldmb Could not format ( Rel ( G ( C UP E ) Y ) -> ( z e. dom ( G ( C UP E ) Y ) <-> E. n z ( G ( C UP E ) Y ) n ) ) : No typesetting found for |- ( Rel ( G ( C UP E ) Y ) -> ( z e. dom ( G ( C UP E ) Y ) <-> E. n z ( G ( C UP E ) Y ) n ) ) with typecode |-
56 54 55 ax-mp Could not format ( z e. dom ( G ( C UP E ) Y ) <-> E. n z ( G ( C UP E ) Y ) n ) : No typesetting found for |- ( z e. dom ( G ( C UP E ) Y ) <-> E. n z ( G ( C UP E ) Y ) n ) with typecode |-
57 50 53 56 3bitr4g Could not format ( ph -> ( z e. dom ( F ( C UP D ) X ) <-> z e. dom ( G ( C UP E ) Y ) ) ) : No typesetting found for |- ( ph -> ( z e. dom ( F ( C UP D ) X ) <-> z e. dom ( G ( C UP E ) Y ) ) ) with typecode |-
58 57 eqrdv Could not format ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) : No typesetting found for |- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) with typecode |-