Metamath Proof Explorer


Theorem cofu1st2nd

Description: Rewrite the functor composition with separated functor parts. (Contributed by Zhi Wang, 15-Nov-2025)

Ref Expression
Hypotheses cofu1st2nd.f φ F C Func D
cofu1st2nd.g φ G D Func E
Assertion cofu1st2nd φ G func F = 1 st G 2 nd G func 1 st F 2 nd F

Proof

Step Hyp Ref Expression
1 cofu1st2nd.f φ F C Func D
2 cofu1st2nd.g φ G D Func E
3 relfunc Rel D Func E
4 1st2nd Rel D Func E G D Func E G = 1 st G 2 nd G
5 3 2 4 sylancr φ G = 1 st G 2 nd G
6 relfunc Rel C Func D
7 1st2nd Rel C Func D F C Func D F = 1 st F 2 nd F
8 6 1 7 sylancr φ F = 1 st F 2 nd F
9 5 8 oveq12d φ G func F = 1 st G 2 nd G func 1 st F 2 nd F