Metamath Proof Explorer


Theorem func1st2nd

Description: Rewrite the functor predicate with separated parts. (Contributed by Zhi Wang, 19-Oct-2025)

Ref Expression
Hypothesis func1st2nd.1 φ F C Func D
Assertion func1st2nd φ 1 st F C Func D 2 nd F

Proof

Step Hyp Ref Expression
1 func1st2nd.1 φ F C Func D
2 relfunc Rel C Func D
3 1st2ndbr Rel C Func D F C Func D 1 st F C Func D 2 nd F
4 2 1 3 sylancr φ 1 st F C Func D 2 nd F