Metamath Proof Explorer


Theorem func1st

Description: Extract the first member of a functor. (Contributed by Zhi Wang, 15-Nov-2025)

Ref Expression
Hypothesis func1st.1 φ F C Func D G
Assertion func1st φ 1 st F G = F

Proof

Step Hyp Ref Expression
1 func1st.1 φ F C Func D G
2 relfunc Rel C Func D
3 2 brrelex12i F C Func D G F V G V
4 op1stg F V G V 1 st F G = F
5 1 3 4 3syl φ 1 st F G = F