Metamath Proof Explorer


Theorem func1st2nd

Description: Rewrite the functor predicate with separated parts. (Contributed by Zhi Wang, 19-Oct-2025)

Ref Expression
Hypothesis func1st2nd.1 ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
Assertion func1st2nd ( 𝜑 → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )

Proof

Step Hyp Ref Expression
1 func1st2nd.1 ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
2 relfunc Rel ( 𝐶 Func 𝐷 )
3 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
4 2 1 3 sylancr ( 𝜑 → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )