| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uobffth.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 2 |
|
uobffth.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 3 |
|
uobffth.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 4 |
|
uobffth.g |
⊢ ( 𝜑 → ( 𝐾 ∘func 𝐹 ) = 𝐺 ) |
| 5 |
|
uobffth.y |
⊢ ( 𝜑 → ( ( 1st ‘ 𝐾 ) ‘ 𝑋 ) = 𝑌 ) |
| 6 |
|
uobeq.i |
⊢ 𝐼 = ( idfunc ‘ 𝐷 ) |
| 7 |
|
uobeq.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Full 𝐸 ) ) |
| 8 |
|
uobeq.n |
⊢ ( 𝜑 → ( 𝐿 ∘func 𝐾 ) = 𝐼 ) |
| 9 |
|
uobeq.l |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐸 Func 𝐷 ) ) |
| 10 |
|
relfunc |
⊢ Rel ( 𝐷 Func 𝐸 ) |
| 11 |
|
fullfunc |
⊢ ( 𝐷 Full 𝐸 ) ⊆ ( 𝐷 Func 𝐸 ) |
| 12 |
11 7
|
sselid |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) |
| 13 |
|
1st2nd |
⊢ ( ( Rel ( 𝐷 Func 𝐸 ) ∧ 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) → 𝐾 = 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ) |
| 14 |
10 12 13
|
sylancr |
⊢ ( 𝜑 → 𝐾 = 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ) |
| 15 |
12
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) ( 𝐷 Func 𝐸 ) ( 2nd ‘ 𝐾 ) ) |
| 16 |
9
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ 𝐿 ) ( 𝐸 Func 𝐷 ) ( 2nd ‘ 𝐿 ) ) |
| 17 |
12 9
|
cofu1st2nd |
⊢ ( 𝜑 → ( 𝐿 ∘func 𝐾 ) = ( 〈 ( 1st ‘ 𝐿 ) , ( 2nd ‘ 𝐿 ) 〉 ∘func 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ) ) |
| 18 |
17 8
|
eqtr3d |
⊢ ( 𝜑 → ( 〈 ( 1st ‘ 𝐿 ) , ( 2nd ‘ 𝐿 ) 〉 ∘func 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ) = 𝐼 ) |
| 19 |
6 15 16 18
|
cofidfth |
⊢ ( 𝜑 → ( 1st ‘ 𝐾 ) ( 𝐷 Faith 𝐸 ) ( 2nd ‘ 𝐾 ) ) |
| 20 |
|
df-br |
⊢ ( ( 1st ‘ 𝐾 ) ( 𝐷 Faith 𝐸 ) ( 2nd ‘ 𝐾 ) ↔ 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ∈ ( 𝐷 Faith 𝐸 ) ) |
| 21 |
19 20
|
sylib |
⊢ ( 𝜑 → 〈 ( 1st ‘ 𝐾 ) , ( 2nd ‘ 𝐾 ) 〉 ∈ ( 𝐷 Faith 𝐸 ) ) |
| 22 |
14 21
|
eqeltrd |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Faith 𝐸 ) ) |
| 23 |
7 22
|
elind |
⊢ ( 𝜑 → 𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ) |
| 24 |
1 2 3 4 5 23
|
uobffth |
⊢ ( 𝜑 → dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) = dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ) |