Metamath Proof Explorer


Theorem uobeq

Description: If a full functor (in fact, a full embedding) is a section of a functor (surjective on objects), then the sets of universal objects are equal. (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Hypotheses uobeq.b 𝐵 = ( Base ‘ 𝐷 )
uobeq.i 𝐼 = ( idfunc𝐷 )
uobeq.x ( 𝜑𝑋𝐵 )
uobeq.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
uobeq.k ( 𝜑𝐾 ∈ ( 𝐷 Full 𝐸 ) )
uobeq.g ( 𝜑 → ( 𝐾func 𝐹 ) = 𝐺 )
uobeq.y ( 𝜑 → ( ( 1st𝐾 ) ‘ 𝑋 ) = 𝑌 )
uobeq.n ( 𝜑 → ( 𝐿func 𝐾 ) = 𝐼 )
uobeq.l ( 𝜑𝐿 ∈ ( 𝐸 Func 𝐷 ) )
Assertion uobeq ( 𝜑 → dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) = dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) )

Proof

Step Hyp Ref Expression
1 uobeq.b 𝐵 = ( Base ‘ 𝐷 )
2 uobeq.i 𝐼 = ( idfunc𝐷 )
3 uobeq.x ( 𝜑𝑋𝐵 )
4 uobeq.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
5 uobeq.k ( 𝜑𝐾 ∈ ( 𝐷 Full 𝐸 ) )
6 uobeq.g ( 𝜑 → ( 𝐾func 𝐹 ) = 𝐺 )
7 uobeq.y ( 𝜑 → ( ( 1st𝐾 ) ‘ 𝑋 ) = 𝑌 )
8 uobeq.n ( 𝜑 → ( 𝐿func 𝐾 ) = 𝐼 )
9 uobeq.l ( 𝜑𝐿 ∈ ( 𝐸 Func 𝐷 ) )
10 19.42v ( ∃ 𝑚 ( 𝜑𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) ↔ ( 𝜑 ∧ ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) )
11 fvexd ( ( 𝜑𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) ∈ V )
12 7 adantr ( ( 𝜑𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ( ( 1st𝐾 ) ‘ 𝑋 ) = 𝑌 )
13 relfunc Rel ( 𝐷 Func 𝐸 )
14 fullfunc ( 𝐷 Full 𝐸 ) ⊆ ( 𝐷 Func 𝐸 )
15 14 5 sselid ( 𝜑𝐾 ∈ ( 𝐷 Func 𝐸 ) )
16 1st2nd ( ( Rel ( 𝐷 Func 𝐸 ) ∧ 𝐾 ∈ ( 𝐷 Func 𝐸 ) ) → 𝐾 = ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ )
17 13 15 16 sylancr ( 𝜑𝐾 = ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ )
18 15 func1st2nd ( 𝜑 → ( 1st𝐾 ) ( 𝐷 Func 𝐸 ) ( 2nd𝐾 ) )
19 9 func1st2nd ( 𝜑 → ( 1st𝐿 ) ( 𝐸 Func 𝐷 ) ( 2nd𝐿 ) )
20 15 9 cofu1st2nd ( 𝜑 → ( 𝐿func 𝐾 ) = ( ⟨ ( 1st𝐿 ) , ( 2nd𝐿 ) ⟩ ∘func ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ ) )
21 20 8 eqtr3d ( 𝜑 → ( ⟨ ( 1st𝐿 ) , ( 2nd𝐿 ) ⟩ ∘func ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ ) = 𝐼 )
22 2 18 19 21 cofidfth ( 𝜑 → ( 1st𝐾 ) ( 𝐷 Faith 𝐸 ) ( 2nd𝐾 ) )
23 df-br ( ( 1st𝐾 ) ( 𝐷 Faith 𝐸 ) ( 2nd𝐾 ) ↔ ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ ∈ ( 𝐷 Faith 𝐸 ) )
24 22 23 sylib ( 𝜑 → ⟨ ( 1st𝐾 ) , ( 2nd𝐾 ) ⟩ ∈ ( 𝐷 Faith 𝐸 ) )
25 17 24 eqeltrd ( 𝜑𝐾 ∈ ( 𝐷 Faith 𝐸 ) )
26 5 25 elind ( 𝜑𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) )
27 26 adantr ( ( 𝜑𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → 𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) )
28 6 adantr ( ( 𝜑𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ( 𝐾func 𝐹 ) = 𝐺 )
29 eqidd ( ( 𝜑𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) = ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) )
30 simpr ( ( 𝜑𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 )
31 12 27 28 29 30 uptrai ( ( 𝜑𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) )
32 breq2 ( 𝑛 = ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) → ( 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ‘ 𝑚 ) ) )
33 11 31 32 spcedv ( ( 𝜑𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 )
34 33 exlimiv ( ∃ 𝑚 ( 𝜑𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 )
35 10 34 sylbir ( ( 𝜑 ∧ ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) → ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 )
36 19.42v ( ∃ 𝑛 ( 𝜑𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) ↔ ( 𝜑 ∧ ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) )
37 fvexd ( ( 𝜑𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ‘ 𝑛 ) ∈ V )
38 7 adantr ( ( 𝜑𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ( ( 1st𝐾 ) ‘ 𝑋 ) = 𝑌 )
39 26 adantr ( ( 𝜑𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → 𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) )
40 6 adantr ( ( 𝜑𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ( 𝐾func 𝐹 ) = 𝐺 )
41 3 adantr ( ( 𝜑𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → 𝑋𝐵 )
42 4 adantr ( ( 𝜑𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) )
43 eqidd ( ( 𝜑𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ‘ 𝑛 ) = ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ‘ 𝑛 ) )
44 simpr ( ( 𝜑𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 )
45 38 39 40 1 41 42 43 44 uptrar ( ( 𝜑𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ‘ 𝑛 ) )
46 breq2 ( 𝑚 = ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ‘ 𝑛 ) → ( 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑧 ) ) ‘ 𝑛 ) ) )
47 37 45 46 spcedv ( ( 𝜑𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 )
48 47 exlimiv ( ∃ 𝑛 ( 𝜑𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 )
49 36 48 sylbir ( ( 𝜑 ∧ ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) → ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 )
50 35 49 impbida ( 𝜑 → ( ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ↔ ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) )
51 relup Rel ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 )
52 releldmb ( Rel ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) → ( 𝑧 ∈ dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) ↔ ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 ) )
53 51 52 ax-mp ( 𝑧 ∈ dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) ↔ ∃ 𝑚 𝑧 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑚 )
54 relup Rel ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 )
55 releldmb ( Rel ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) → ( 𝑧 ∈ dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ↔ ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 ) )
56 54 55 ax-mp ( 𝑧 ∈ dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ↔ ∃ 𝑛 𝑧 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑛 )
57 50 53 56 3bitr4g ( 𝜑 → ( 𝑧 ∈ dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) ↔ 𝑧 ∈ dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ) )
58 57 eqrdv ( 𝜑 → dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) = dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) )