Metamath Proof Explorer


Theorem cofidfth

Description: If " F is a section of G " in a category of small categories (in a universe), then F is faithful. Combined with cofidf1 , this theorem proves that F is an embedding (a faithful functor injective on objects, remark 3.28(1) of Adamek p. 34). (Contributed by Zhi Wang, 15-Nov-2025)

Ref Expression
Hypotheses cofidfth.i 𝐼 = ( idfunc𝐷 )
cofidfth.f ( 𝜑𝐹 ( 𝐷 Func 𝐸 ) 𝐺 )
cofidfth.k ( 𝜑𝐾 ( 𝐸 Func 𝐷 ) 𝐿 )
cofidfth.o ( 𝜑 → ( ⟨ 𝐾 , 𝐿 ⟩ ∘func𝐹 , 𝐺 ⟩ ) = 𝐼 )
Assertion cofidfth ( 𝜑𝐹 ( 𝐷 Faith 𝐸 ) 𝐺 )

Proof

Step Hyp Ref Expression
1 cofidfth.i 𝐼 = ( idfunc𝐷 )
2 cofidfth.f ( 𝜑𝐹 ( 𝐷 Func 𝐸 ) 𝐺 )
3 cofidfth.k ( 𝜑𝐾 ( 𝐸 Func 𝐷 ) 𝐿 )
4 cofidfth.o ( 𝜑 → ( ⟨ 𝐾 , 𝐿 ⟩ ∘func𝐹 , 𝐺 ⟩ ) = 𝐼 )
5 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
6 2 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 )
7 3 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝐾 ( 𝐸 Func 𝐷 ) 𝐿 )
8 4 adantr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( ⟨ 𝐾 , 𝐿 ⟩ ∘func𝐹 , 𝐺 ⟩ ) = 𝐼 )
9 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
10 eqid ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 )
11 simprl ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐷 ) )
12 simprr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐷 ) )
13 1 5 6 7 8 9 10 11 12 cofidf2 ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) –1-1→ ( ( 𝐹𝑥 ) ( Hom ‘ 𝐸 ) ( 𝐹𝑦 ) ) ∧ ( ( 𝐹𝑥 ) 𝐿 ( 𝐹𝑦 ) ) : ( ( 𝐹𝑥 ) ( Hom ‘ 𝐸 ) ( 𝐹𝑦 ) ) –onto→ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) )
14 13 simpld ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) –1-1→ ( ( 𝐹𝑥 ) ( Hom ‘ 𝐸 ) ( 𝐹𝑦 ) ) )
15 14 ralrimivva ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐷 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) –1-1→ ( ( 𝐹𝑥 ) ( Hom ‘ 𝐸 ) ( 𝐹𝑦 ) ) )
16 5 9 10 isfth2 ( 𝐹 ( 𝐷 Faith 𝐸 ) 𝐺 ↔ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐷 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) –1-1→ ( ( 𝐹𝑥 ) ( Hom ‘ 𝐸 ) ( 𝐹𝑦 ) ) ) )
17 2 15 16 sylanbrc ( 𝜑𝐹 ( 𝐷 Faith 𝐸 ) 𝐺 )