| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cofidfth.i |
⊢ 𝐼 = ( idfunc ‘ 𝐷 ) |
| 2 |
|
cofidfth.f |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 3 |
|
cofidfth.k |
⊢ ( 𝜑 → 𝐾 ( 𝐸 Func 𝐷 ) 𝐿 ) |
| 4 |
|
cofidfth.o |
⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 𝐼 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 6 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 7 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝐾 ( 𝐸 Func 𝐷 ) 𝐿 ) |
| 8 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 𝐼 ) |
| 9 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 10 |
|
eqid |
⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) |
| 11 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐷 ) ) |
| 12 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐷 ) ) |
| 13 |
1 5 6 7 8 9 10 11 12
|
cofidf2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) : ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) –onto→ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) ) |
| 14 |
13
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 15 |
14
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐷 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 16 |
5 9 10
|
isfth2 |
⊢ ( 𝐹 ( 𝐷 Faith 𝐸 ) 𝐺 ↔ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐷 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 17 |
2 15 16
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Faith 𝐸 ) 𝐺 ) |