| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cofidval.i |
⊢ 𝐼 = ( idfunc ‘ 𝐷 ) |
| 2 |
|
cofidval.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 3 |
|
cofidval.f |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 4 |
|
cofidval.k |
⊢ ( 𝜑 → 𝐾 ( 𝐸 Func 𝐷 ) 𝐿 ) |
| 5 |
|
cofidval.o |
⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 𝐼 ) |
| 6 |
|
cofidf1.c |
⊢ 𝐶 = ( Base ‘ 𝐸 ) |
| 7 |
2 6 3
|
funcf1 |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 8 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 9 |
1 2 3 4 5 8
|
cofidval |
⊢ ( 𝜑 → ( ( 𝐾 ∘ 𝐹 ) = ( I ↾ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) = ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) ) |
| 10 |
9
|
simpld |
⊢ ( 𝜑 → ( 𝐾 ∘ 𝐹 ) = ( I ↾ 𝐵 ) ) |
| 11 |
|
fcof1 |
⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ( 𝐾 ∘ 𝐹 ) = ( I ↾ 𝐵 ) ) → 𝐹 : 𝐵 –1-1→ 𝐶 ) |
| 12 |
7 10 11
|
syl2anc |
⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1→ 𝐶 ) |
| 13 |
6 2 4
|
funcf1 |
⊢ ( 𝜑 → 𝐾 : 𝐶 ⟶ 𝐵 ) |
| 14 |
|
fcofo |
⊢ ( ( 𝐾 : 𝐶 ⟶ 𝐵 ∧ 𝐹 : 𝐵 ⟶ 𝐶 ∧ ( 𝐾 ∘ 𝐹 ) = ( I ↾ 𝐵 ) ) → 𝐾 : 𝐶 –onto→ 𝐵 ) |
| 15 |
13 7 10 14
|
syl3anc |
⊢ ( 𝜑 → 𝐾 : 𝐶 –onto→ 𝐵 ) |
| 16 |
12 15
|
jca |
⊢ ( 𝜑 → ( 𝐹 : 𝐵 –1-1→ 𝐶 ∧ 𝐾 : 𝐶 –onto→ 𝐵 ) ) |