Metamath Proof Explorer


Theorem cofidf1

Description: If " <. F , G >. is a section of <. K , L >. " in a category of small categories (in a universe), then F is injective, and K is surjective. (Contributed by Zhi Wang, 15-Nov-2025)

Ref Expression
Hypotheses cofidval.i 𝐼 = ( idfunc𝐷 )
cofidval.b 𝐵 = ( Base ‘ 𝐷 )
cofidval.f ( 𝜑𝐹 ( 𝐷 Func 𝐸 ) 𝐺 )
cofidval.k ( 𝜑𝐾 ( 𝐸 Func 𝐷 ) 𝐿 )
cofidval.o ( 𝜑 → ( ⟨ 𝐾 , 𝐿 ⟩ ∘func𝐹 , 𝐺 ⟩ ) = 𝐼 )
cofidf1.c 𝐶 = ( Base ‘ 𝐸 )
Assertion cofidf1 ( 𝜑 → ( 𝐹 : 𝐵1-1𝐶𝐾 : 𝐶onto𝐵 ) )

Proof

Step Hyp Ref Expression
1 cofidval.i 𝐼 = ( idfunc𝐷 )
2 cofidval.b 𝐵 = ( Base ‘ 𝐷 )
3 cofidval.f ( 𝜑𝐹 ( 𝐷 Func 𝐸 ) 𝐺 )
4 cofidval.k ( 𝜑𝐾 ( 𝐸 Func 𝐷 ) 𝐿 )
5 cofidval.o ( 𝜑 → ( ⟨ 𝐾 , 𝐿 ⟩ ∘func𝐹 , 𝐺 ⟩ ) = 𝐼 )
6 cofidf1.c 𝐶 = ( Base ‘ 𝐸 )
7 2 6 3 funcf1 ( 𝜑𝐹 : 𝐵𝐶 )
8 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
9 1 2 3 4 5 8 cofidval ( 𝜑 → ( ( 𝐾𝐹 ) = ( I ↾ 𝐵 ) ∧ ( 𝑥𝐵 , 𝑦𝐵 ↦ ( ( ( 𝐹𝑥 ) 𝐿 ( 𝐹𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) = ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( ( Hom ‘ 𝐷 ) ‘ 𝑧 ) ) ) ) )
10 9 simpld ( 𝜑 → ( 𝐾𝐹 ) = ( I ↾ 𝐵 ) )
11 fcof1 ( ( 𝐹 : 𝐵𝐶 ∧ ( 𝐾𝐹 ) = ( I ↾ 𝐵 ) ) → 𝐹 : 𝐵1-1𝐶 )
12 7 10 11 syl2anc ( 𝜑𝐹 : 𝐵1-1𝐶 )
13 6 2 4 funcf1 ( 𝜑𝐾 : 𝐶𝐵 )
14 fcofo ( ( 𝐾 : 𝐶𝐵𝐹 : 𝐵𝐶 ∧ ( 𝐾𝐹 ) = ( I ↾ 𝐵 ) ) → 𝐾 : 𝐶onto𝐵 )
15 13 7 10 14 syl3anc ( 𝜑𝐾 : 𝐶onto𝐵 )
16 12 15 jca ( 𝜑 → ( 𝐹 : 𝐵1-1𝐶𝐾 : 𝐶onto𝐵 ) )