| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cofidval.i |
⊢ 𝐼 = ( idfunc ‘ 𝐷 ) |
| 2 |
|
cofidval.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 3 |
|
cofidval.f |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 4 |
|
cofidval.k |
⊢ ( 𝜑 → 𝐾 ( 𝐸 Func 𝐷 ) 𝐿 ) |
| 5 |
|
cofidval.o |
⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 𝐼 ) |
| 6 |
|
cofidval.h |
⊢ 𝐻 = ( Hom ‘ 𝐷 ) |
| 7 |
2 3 4
|
cofuval2 |
⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 ( 𝐾 ∘ 𝐹 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) 〉 ) |
| 8 |
3
|
funcrcl2 |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 9 |
1 2 8 6
|
idfuval |
⊢ ( 𝜑 → 𝐼 = 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) 〉 ) |
| 10 |
5 7 9
|
3eqtr3d |
⊢ ( 𝜑 → 〈 ( 𝐾 ∘ 𝐹 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) 〉 = 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) 〉 ) |
| 11 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
| 12 |
|
resiexg |
⊢ ( 𝐵 ∈ V → ( I ↾ 𝐵 ) ∈ V ) |
| 13 |
11 12
|
ax-mp |
⊢ ( I ↾ 𝐵 ) ∈ V |
| 14 |
11 11
|
xpex |
⊢ ( 𝐵 × 𝐵 ) ∈ V |
| 15 |
14
|
mptex |
⊢ ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) ∈ V |
| 16 |
13 15
|
opth2 |
⊢ ( 〈 ( 𝐾 ∘ 𝐹 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) 〉 = 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) 〉 ↔ ( ( 𝐾 ∘ 𝐹 ) = ( I ↾ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) = ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) ) ) |
| 17 |
10 16
|
sylib |
⊢ ( 𝜑 → ( ( 𝐾 ∘ 𝐹 ) = ( I ↾ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( 𝐹 ‘ 𝑥 ) 𝐿 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) = ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) ) ) |