| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cofuval2.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 2 |
|
cofuval2.f |
⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 3 |
|
cofuval2.x |
⊢ ( 𝜑 → 𝐻 ( 𝐷 Func 𝐸 ) 𝐾 ) |
| 4 |
|
df-br |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
| 5 |
2 4
|
sylib |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
| 6 |
|
df-br |
⊢ ( 𝐻 ( 𝐷 Func 𝐸 ) 𝐾 ↔ 〈 𝐻 , 𝐾 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
| 7 |
3 6
|
sylib |
⊢ ( 𝜑 → 〈 𝐻 , 𝐾 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
| 8 |
1 5 7
|
cofuval |
⊢ ( 𝜑 → ( 〈 𝐻 , 𝐾 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 ( ( 1st ‘ 〈 𝐻 , 𝐾 〉 ) ∘ ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) ( 2nd ‘ 〈 𝐻 , 𝐾 〉 ) ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) ) ) 〉 ) |
| 9 |
|
relfunc |
⊢ Rel ( 𝐷 Func 𝐸 ) |
| 10 |
|
brrelex12 |
⊢ ( ( Rel ( 𝐷 Func 𝐸 ) ∧ 𝐻 ( 𝐷 Func 𝐸 ) 𝐾 ) → ( 𝐻 ∈ V ∧ 𝐾 ∈ V ) ) |
| 11 |
9 3 10
|
sylancr |
⊢ ( 𝜑 → ( 𝐻 ∈ V ∧ 𝐾 ∈ V ) ) |
| 12 |
|
op1stg |
⊢ ( ( 𝐻 ∈ V ∧ 𝐾 ∈ V ) → ( 1st ‘ 〈 𝐻 , 𝐾 〉 ) = 𝐻 ) |
| 13 |
11 12
|
syl |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝐻 , 𝐾 〉 ) = 𝐻 ) |
| 14 |
|
relfunc |
⊢ Rel ( 𝐶 Func 𝐷 ) |
| 15 |
|
brrelex12 |
⊢ ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) |
| 16 |
14 2 15
|
sylancr |
⊢ ( 𝜑 → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) |
| 17 |
|
op1stg |
⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) |
| 18 |
16 17
|
syl |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) |
| 19 |
13 18
|
coeq12d |
⊢ ( 𝜑 → ( ( 1st ‘ 〈 𝐻 , 𝐾 〉 ) ∘ ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ) = ( 𝐻 ∘ 𝐹 ) ) |
| 20 |
|
op2ndg |
⊢ ( ( 𝐻 ∈ V ∧ 𝐾 ∈ V ) → ( 2nd ‘ 〈 𝐻 , 𝐾 〉 ) = 𝐾 ) |
| 21 |
11 20
|
syl |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐻 , 𝐾 〉 ) = 𝐾 ) |
| 22 |
21
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 2nd ‘ 〈 𝐻 , 𝐾 〉 ) = 𝐾 ) |
| 23 |
18
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) |
| 24 |
23
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 25 |
23
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 26 |
22 24 25
|
oveq123d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) ( 2nd ‘ 〈 𝐻 , 𝐾 〉 ) ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) 𝐾 ( 𝐹 ‘ 𝑦 ) ) ) |
| 27 |
|
op2ndg |
⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐺 ) |
| 28 |
16 27
|
syl |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐺 ) |
| 29 |
28
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐺 ) |
| 30 |
29
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) |
| 31 |
26 30
|
coeq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) ( 2nd ‘ 〈 𝐻 , 𝐾 〉 ) ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) ) = ( ( ( 𝐹 ‘ 𝑥 ) 𝐾 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) |
| 32 |
31
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) ( 2nd ‘ 〈 𝐻 , 𝐾 〉 ) ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( 𝐹 ‘ 𝑥 ) 𝐾 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) ) |
| 33 |
19 32
|
opeq12d |
⊢ ( 𝜑 → 〈 ( ( 1st ‘ 〈 𝐻 , 𝐾 〉 ) ∘ ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) ( 2nd ‘ 〈 𝐻 , 𝐾 〉 ) ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) ) ) 〉 = 〈 ( 𝐻 ∘ 𝐹 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( 𝐹 ‘ 𝑥 ) 𝐾 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) 〉 ) |
| 34 |
8 33
|
eqtrd |
⊢ ( 𝜑 → ( 〈 𝐻 , 𝐾 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 〈 ( 𝐻 ∘ 𝐹 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( ( 𝐹 ‘ 𝑥 ) 𝐾 ( 𝐹 ‘ 𝑦 ) ) ∘ ( 𝑥 𝐺 𝑦 ) ) ) 〉 ) |