Metamath Proof Explorer


Theorem brrelex12

Description: Two classes related by a binary relation are sets. (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion brrelex12 ( ( Rel 𝑅𝐴 𝑅 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )

Proof

Step Hyp Ref Expression
1 df-rel ( Rel 𝑅𝑅 ⊆ ( V × V ) )
2 1 biimpi ( Rel 𝑅𝑅 ⊆ ( V × V ) )
3 2 ssbrd ( Rel 𝑅 → ( 𝐴 𝑅 𝐵𝐴 ( V × V ) 𝐵 ) )
4 3 imp ( ( Rel 𝑅𝐴 𝑅 𝐵 ) → 𝐴 ( V × V ) 𝐵 )
5 brxp ( 𝐴 ( V × V ) 𝐵 ↔ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
6 4 5 sylib ( ( Rel 𝑅𝐴 𝑅 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )