Description: Two classes related by a binary relation are sets. (Contributed by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brrelex12 | ⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel | ⊢ ( Rel 𝑅 ↔ 𝑅 ⊆ ( V × V ) ) | |
| 2 | 1 | biimpi | ⊢ ( Rel 𝑅 → 𝑅 ⊆ ( V × V ) ) |
| 3 | 2 | ssbrd | ⊢ ( Rel 𝑅 → ( 𝐴 𝑅 𝐵 → 𝐴 ( V × V ) 𝐵 ) ) |
| 4 | 3 | imp | ⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝐵 ) → 𝐴 ( V × V ) 𝐵 ) |
| 5 | brxp | ⊢ ( 𝐴 ( V × V ) 𝐵 ↔ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) | |
| 6 | 4 5 | sylib | ⊢ ( ( Rel 𝑅 ∧ 𝐴 𝑅 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |