Metamath Proof Explorer


Theorem brrelex12

Description: Two classes related by a binary relation are sets. (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion brrelex12
|- ( ( Rel R /\ A R B ) -> ( A e. _V /\ B e. _V ) )

Proof

Step Hyp Ref Expression
1 df-rel
 |-  ( Rel R <-> R C_ ( _V X. _V ) )
2 1 biimpi
 |-  ( Rel R -> R C_ ( _V X. _V ) )
3 2 ssbrd
 |-  ( Rel R -> ( A R B -> A ( _V X. _V ) B ) )
4 3 imp
 |-  ( ( Rel R /\ A R B ) -> A ( _V X. _V ) B )
5 brxp
 |-  ( A ( _V X. _V ) B <-> ( A e. _V /\ B e. _V ) )
6 4 5 sylib
 |-  ( ( Rel R /\ A R B ) -> ( A e. _V /\ B e. _V ) )