Description: Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ssbrd.1 | |- ( ph -> A C_ B ) |
|
| Assertion | ssbrd | |- ( ph -> ( C A D -> C B D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbrd.1 | |- ( ph -> A C_ B ) |
|
| 2 | 1 | sseld | |- ( ph -> ( <. C , D >. e. A -> <. C , D >. e. B ) ) |
| 3 | df-br | |- ( C A D <-> <. C , D >. e. A ) |
|
| 4 | df-br | |- ( C B D <-> <. C , D >. e. B ) |
|
| 5 | 2 3 4 | 3imtr4g | |- ( ph -> ( C A D -> C B D ) ) |