| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cofidval.i |
⊢ 𝐼 = ( idfunc ‘ 𝐷 ) |
| 2 |
|
cofidval.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| 3 |
|
cofidval.f |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
| 4 |
|
cofidval.k |
⊢ ( 𝜑 → 𝐾 ( 𝐸 Func 𝐷 ) 𝐿 ) |
| 5 |
|
cofidval.o |
⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 𝐼 ) |
| 6 |
|
cofidval.h |
⊢ 𝐻 = ( Hom ‘ 𝐷 ) |
| 7 |
|
cofidf2.j |
⊢ 𝐽 = ( Hom ‘ 𝐸 ) |
| 8 |
|
cofidf2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 9 |
|
cofidf2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 10 |
|
df-br |
⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
| 11 |
3 10
|
sylib |
⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
| 12 |
|
df-br |
⊢ ( 𝐾 ( 𝐸 Func 𝐷 ) 𝐿 ↔ 〈 𝐾 , 𝐿 〉 ∈ ( 𝐸 Func 𝐷 ) ) |
| 13 |
4 12
|
sylib |
⊢ ( 𝜑 → 〈 𝐾 , 𝐿 〉 ∈ ( 𝐸 Func 𝐷 ) ) |
| 14 |
1 2 11 13 5 6 7 8 9
|
cofidf2a |
⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) ∧ ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) : ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) –onto→ ( 𝑋 𝐻 𝑌 ) ) ) |
| 15 |
3
|
func2nd |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐺 ) |
| 16 |
15
|
oveqd |
⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑌 ) = ( 𝑋 𝐺 𝑌 ) ) |
| 17 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 𝐻 𝑌 ) ) |
| 18 |
3
|
func1st |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) |
| 19 |
18
|
fveq1d |
⊢ ( 𝜑 → ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 20 |
18
|
fveq1d |
⊢ ( 𝜑 → ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 21 |
19 20
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) |
| 22 |
16 17 21
|
f1eq123d |
⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) ↔ ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ) ) |
| 23 |
4
|
func2nd |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) = 𝐿 ) |
| 24 |
23 19 20
|
oveq123d |
⊢ ( 𝜑 → ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ) |
| 25 |
24 21 17
|
foeq123d |
⊢ ( 𝜑 → ( ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) : ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) –onto→ ( 𝑋 𝐻 𝑌 ) ↔ ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) : ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) –onto→ ( 𝑋 𝐻 𝑌 ) ) ) |
| 26 |
22 25
|
anbi12d |
⊢ ( 𝜑 → ( ( ( 𝑋 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) ∧ ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) : ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) –onto→ ( 𝑋 𝐻 𝑌 ) ) ↔ ( ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ∧ ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) : ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) –onto→ ( 𝑋 𝐻 𝑌 ) ) ) ) |
| 27 |
14 26
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) : ( 𝑋 𝐻 𝑌 ) –1-1→ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) ∧ ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) : ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐹 ‘ 𝑌 ) ) –onto→ ( 𝑋 𝐻 𝑌 ) ) ) |