| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cofidval.i |
|- I = ( idFunc ` D ) |
| 2 |
|
cofidval.b |
|- B = ( Base ` D ) |
| 3 |
|
cofidval.f |
|- ( ph -> F ( D Func E ) G ) |
| 4 |
|
cofidval.k |
|- ( ph -> K ( E Func D ) L ) |
| 5 |
|
cofidval.o |
|- ( ph -> ( <. K , L >. o.func <. F , G >. ) = I ) |
| 6 |
|
cofidval.h |
|- H = ( Hom ` D ) |
| 7 |
|
cofidf2.j |
|- J = ( Hom ` E ) |
| 8 |
|
cofidf2.x |
|- ( ph -> X e. B ) |
| 9 |
|
cofidf2.y |
|- ( ph -> Y e. B ) |
| 10 |
|
df-br |
|- ( F ( D Func E ) G <-> <. F , G >. e. ( D Func E ) ) |
| 11 |
3 10
|
sylib |
|- ( ph -> <. F , G >. e. ( D Func E ) ) |
| 12 |
|
df-br |
|- ( K ( E Func D ) L <-> <. K , L >. e. ( E Func D ) ) |
| 13 |
4 12
|
sylib |
|- ( ph -> <. K , L >. e. ( E Func D ) ) |
| 14 |
1 2 11 13 5 6 7 8 9
|
cofidf2a |
|- ( ph -> ( ( X ( 2nd ` <. F , G >. ) Y ) : ( X H Y ) -1-1-> ( ( ( 1st ` <. F , G >. ) ` X ) J ( ( 1st ` <. F , G >. ) ` Y ) ) /\ ( ( ( 1st ` <. F , G >. ) ` X ) ( 2nd ` <. K , L >. ) ( ( 1st ` <. F , G >. ) ` Y ) ) : ( ( ( 1st ` <. F , G >. ) ` X ) J ( ( 1st ` <. F , G >. ) ` Y ) ) -onto-> ( X H Y ) ) ) |
| 15 |
3
|
func2nd |
|- ( ph -> ( 2nd ` <. F , G >. ) = G ) |
| 16 |
15
|
oveqd |
|- ( ph -> ( X ( 2nd ` <. F , G >. ) Y ) = ( X G Y ) ) |
| 17 |
|
eqidd |
|- ( ph -> ( X H Y ) = ( X H Y ) ) |
| 18 |
3
|
func1st |
|- ( ph -> ( 1st ` <. F , G >. ) = F ) |
| 19 |
18
|
fveq1d |
|- ( ph -> ( ( 1st ` <. F , G >. ) ` X ) = ( F ` X ) ) |
| 20 |
18
|
fveq1d |
|- ( ph -> ( ( 1st ` <. F , G >. ) ` Y ) = ( F ` Y ) ) |
| 21 |
19 20
|
oveq12d |
|- ( ph -> ( ( ( 1st ` <. F , G >. ) ` X ) J ( ( 1st ` <. F , G >. ) ` Y ) ) = ( ( F ` X ) J ( F ` Y ) ) ) |
| 22 |
16 17 21
|
f1eq123d |
|- ( ph -> ( ( X ( 2nd ` <. F , G >. ) Y ) : ( X H Y ) -1-1-> ( ( ( 1st ` <. F , G >. ) ` X ) J ( ( 1st ` <. F , G >. ) ` Y ) ) <-> ( X G Y ) : ( X H Y ) -1-1-> ( ( F ` X ) J ( F ` Y ) ) ) ) |
| 23 |
4
|
func2nd |
|- ( ph -> ( 2nd ` <. K , L >. ) = L ) |
| 24 |
23 19 20
|
oveq123d |
|- ( ph -> ( ( ( 1st ` <. F , G >. ) ` X ) ( 2nd ` <. K , L >. ) ( ( 1st ` <. F , G >. ) ` Y ) ) = ( ( F ` X ) L ( F ` Y ) ) ) |
| 25 |
24 21 17
|
foeq123d |
|- ( ph -> ( ( ( ( 1st ` <. F , G >. ) ` X ) ( 2nd ` <. K , L >. ) ( ( 1st ` <. F , G >. ) ` Y ) ) : ( ( ( 1st ` <. F , G >. ) ` X ) J ( ( 1st ` <. F , G >. ) ` Y ) ) -onto-> ( X H Y ) <-> ( ( F ` X ) L ( F ` Y ) ) : ( ( F ` X ) J ( F ` Y ) ) -onto-> ( X H Y ) ) ) |
| 26 |
22 25
|
anbi12d |
|- ( ph -> ( ( ( X ( 2nd ` <. F , G >. ) Y ) : ( X H Y ) -1-1-> ( ( ( 1st ` <. F , G >. ) ` X ) J ( ( 1st ` <. F , G >. ) ` Y ) ) /\ ( ( ( 1st ` <. F , G >. ) ` X ) ( 2nd ` <. K , L >. ) ( ( 1st ` <. F , G >. ) ` Y ) ) : ( ( ( 1st ` <. F , G >. ) ` X ) J ( ( 1st ` <. F , G >. ) ` Y ) ) -onto-> ( X H Y ) ) <-> ( ( X G Y ) : ( X H Y ) -1-1-> ( ( F ` X ) J ( F ` Y ) ) /\ ( ( F ` X ) L ( F ` Y ) ) : ( ( F ` X ) J ( F ` Y ) ) -onto-> ( X H Y ) ) ) ) |
| 27 |
14 26
|
mpbid |
|- ( ph -> ( ( X G Y ) : ( X H Y ) -1-1-> ( ( F ` X ) J ( F ` Y ) ) /\ ( ( F ` X ) L ( F ` Y ) ) : ( ( F ` X ) J ( F ` Y ) ) -onto-> ( X H Y ) ) ) |