Description: Extract the second member of a functor. (Contributed by Zhi Wang, 15-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | func1st.1 | |- ( ph -> F ( C Func D ) G ) |
|
| Assertion | func2nd | |- ( ph -> ( 2nd ` <. F , G >. ) = G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | func1st.1 | |- ( ph -> F ( C Func D ) G ) |
|
| 2 | relfunc | |- Rel ( C Func D ) |
|
| 3 | 2 | brrelex12i | |- ( F ( C Func D ) G -> ( F e. _V /\ G e. _V ) ) |
| 4 | op2ndg | |- ( ( F e. _V /\ G e. _V ) -> ( 2nd ` <. F , G >. ) = G ) |
|
| 5 | 1 3 4 | 3syl | |- ( ph -> ( 2nd ` <. F , G >. ) = G ) |