Description: Extract the second member of a functor. (Contributed by Zhi Wang, 15-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | func1st.1 | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | |
| Assertion | func2nd | ⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | func1st.1 | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | |
| 2 | relfunc | ⊢ Rel ( 𝐶 Func 𝐷 ) | |
| 3 | 2 | brrelex12i | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) |
| 4 | op2ndg | ⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐺 ) | |
| 5 | 1 3 4 | 3syl | ⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐺 ) |