| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cofidval.i |
|- I = ( idFunc ` D ) |
| 2 |
|
cofidval.b |
|- B = ( Base ` D ) |
| 3 |
|
cofidval.f |
|- ( ph -> F ( D Func E ) G ) |
| 4 |
|
cofidval.k |
|- ( ph -> K ( E Func D ) L ) |
| 5 |
|
cofidval.o |
|- ( ph -> ( <. K , L >. o.func <. F , G >. ) = I ) |
| 6 |
|
cofidf1.c |
|- C = ( Base ` E ) |
| 7 |
2 6 3
|
funcf1 |
|- ( ph -> F : B --> C ) |
| 8 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 9 |
1 2 3 4 5 8
|
cofidval |
|- ( ph -> ( ( K o. F ) = ( _I |` B ) /\ ( x e. B , y e. B |-> ( ( ( F ` x ) L ( F ` y ) ) o. ( x G y ) ) ) = ( z e. ( B X. B ) |-> ( _I |` ( ( Hom ` D ) ` z ) ) ) ) ) |
| 10 |
9
|
simpld |
|- ( ph -> ( K o. F ) = ( _I |` B ) ) |
| 11 |
|
fcof1 |
|- ( ( F : B --> C /\ ( K o. F ) = ( _I |` B ) ) -> F : B -1-1-> C ) |
| 12 |
7 10 11
|
syl2anc |
|- ( ph -> F : B -1-1-> C ) |
| 13 |
6 2 4
|
funcf1 |
|- ( ph -> K : C --> B ) |
| 14 |
|
fcofo |
|- ( ( K : C --> B /\ F : B --> C /\ ( K o. F ) = ( _I |` B ) ) -> K : C -onto-> B ) |
| 15 |
13 7 10 14
|
syl3anc |
|- ( ph -> K : C -onto-> B ) |
| 16 |
12 15
|
jca |
|- ( ph -> ( F : B -1-1-> C /\ K : C -onto-> B ) ) |