| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							f1eq123d.1 | 
							⊢ ( 𝜑  →  𝐹  =  𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							f1eq123d.2 | 
							⊢ ( 𝜑  →  𝐴  =  𝐵 )  | 
						
						
							| 3 | 
							
								
							 | 
							f1eq123d.3 | 
							⊢ ( 𝜑  →  𝐶  =  𝐷 )  | 
						
						
							| 4 | 
							
								
							 | 
							foeq1 | 
							⊢ ( 𝐹  =  𝐺  →  ( 𝐹 : 𝐴 –onto→ 𝐶  ↔  𝐺 : 𝐴 –onto→ 𝐶 ) )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐹 : 𝐴 –onto→ 𝐶  ↔  𝐺 : 𝐴 –onto→ 𝐶 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							foeq2 | 
							⊢ ( 𝐴  =  𝐵  →  ( 𝐺 : 𝐴 –onto→ 𝐶  ↔  𝐺 : 𝐵 –onto→ 𝐶 ) )  | 
						
						
							| 7 | 
							
								2 6
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐺 : 𝐴 –onto→ 𝐶  ↔  𝐺 : 𝐵 –onto→ 𝐶 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							foeq3 | 
							⊢ ( 𝐶  =  𝐷  →  ( 𝐺 : 𝐵 –onto→ 𝐶  ↔  𝐺 : 𝐵 –onto→ 𝐷 ) )  | 
						
						
							| 9 | 
							
								3 8
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐺 : 𝐵 –onto→ 𝐶  ↔  𝐺 : 𝐵 –onto→ 𝐷 ) )  | 
						
						
							| 10 | 
							
								5 7 9
							 | 
							3bitrd | 
							⊢ ( 𝜑  →  ( 𝐹 : 𝐴 –onto→ 𝐶  ↔  𝐺 : 𝐵 –onto→ 𝐷 ) )  |