| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 2 |
|
simprr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 3 |
2
|
fveq2d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑅 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑅 ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
| 4 |
|
simpll |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 5 |
|
simprll |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑥 ∈ 𝐴 ) |
| 6 |
|
fvco3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑅 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝑅 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 7 |
4 5 6
|
syl2anc |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑅 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝑅 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 8 |
|
simprlr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑦 ∈ 𝐴 ) |
| 9 |
|
fvco3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑅 ∘ 𝐹 ) ‘ 𝑦 ) = ( 𝑅 ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
| 10 |
4 8 9
|
syl2anc |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑅 ∘ 𝐹 ) ‘ 𝑦 ) = ( 𝑅 ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
| 11 |
3 7 10
|
3eqtr4d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑅 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝑅 ∘ 𝐹 ) ‘ 𝑦 ) ) |
| 12 |
|
simplr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) |
| 13 |
12
|
fveq1d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑅 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑥 ) ) |
| 14 |
12
|
fveq1d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑅 ∘ 𝐹 ) ‘ 𝑦 ) = ( ( I ↾ 𝐴 ) ‘ 𝑦 ) ) |
| 15 |
11 13 14
|
3eqtr3d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = ( ( I ↾ 𝐴 ) ‘ 𝑦 ) ) |
| 16 |
|
fvresi |
⊢ ( 𝑥 ∈ 𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = 𝑥 ) |
| 17 |
5 16
|
syl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = 𝑥 ) |
| 18 |
|
fvresi |
⊢ ( 𝑦 ∈ 𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑦 ) = 𝑦 ) |
| 19 |
8 18
|
syl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( ( I ↾ 𝐴 ) ‘ 𝑦 ) = 𝑦 ) |
| 20 |
15 17 19
|
3eqtr3d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → 𝑥 = 𝑦 ) |
| 21 |
20
|
expr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 22 |
21
|
ralrimivva |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 23 |
|
dff13 |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 24 |
1 22 23
|
sylanbrc |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝑅 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |