Metamath Proof Explorer


Theorem isfth2

Description: Equivalent condition for a faithful functor. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses isfth.b 𝐵 = ( Base ‘ 𝐶 )
isfth.h 𝐻 = ( Hom ‘ 𝐶 )
isfth.j 𝐽 = ( Hom ‘ 𝐷 )
Assertion isfth2 ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) )

Proof

Step Hyp Ref Expression
1 isfth.b 𝐵 = ( Base ‘ 𝐶 )
2 isfth.h 𝐻 = ( Hom ‘ 𝐶 )
3 isfth.j 𝐽 = ( Hom ‘ 𝐷 )
4 1 isfth ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥𝐵𝑦𝐵 Fun ( 𝑥 𝐺 𝑦 ) ) )
5 simpll ( ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺𝑥𝐵 ) ∧ 𝑦𝐵 ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 )
6 simplr ( ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺𝑥𝐵 ) ∧ 𝑦𝐵 ) → 𝑥𝐵 )
7 simpr ( ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺𝑥𝐵 ) ∧ 𝑦𝐵 ) → 𝑦𝐵 )
8 1 2 3 5 6 7 funcf2 ( ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺𝑥𝐵 ) ∧ 𝑦𝐵 ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) )
9 df-f1 ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ↔ ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ∧ Fun ( 𝑥 𝐺 𝑦 ) ) )
10 9 baib ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ↔ Fun ( 𝑥 𝐺 𝑦 ) ) )
11 8 10 syl ( ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺𝑥𝐵 ) ∧ 𝑦𝐵 ) → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ↔ Fun ( 𝑥 𝐺 𝑦 ) ) )
12 11 ralbidva ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺𝑥𝐵 ) → ( ∀ 𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ↔ ∀ 𝑦𝐵 Fun ( 𝑥 𝐺 𝑦 ) ) )
13 12 ralbidva ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ↔ ∀ 𝑥𝐵𝑦𝐵 Fun ( 𝑥 𝐺 𝑦 ) ) )
14 13 pm5.32i ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥𝐵𝑦𝐵 Fun ( 𝑥 𝐺 𝑦 ) ) )
15 4 14 bitr4i ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –1-1→ ( ( 𝐹𝑥 ) 𝐽 ( 𝐹𝑦 ) ) ) )