| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isfth.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 2 |
|
fthfunc |
⊢ ( 𝐶 Faith 𝐷 ) ⊆ ( 𝐶 Func 𝐷 ) |
| 3 |
2
|
ssbri |
⊢ ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 4 |
|
df-br |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
| 5 |
|
funcrcl |
⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
| 6 |
4 5
|
sylbi |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
| 7 |
|
oveq12 |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) → ( 𝑐 Func 𝑑 ) = ( 𝐶 Func 𝐷 ) ) |
| 8 |
7
|
breqd |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) → ( 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 ↔ 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ) ) |
| 9 |
|
simpl |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) → 𝑐 = 𝐶 ) |
| 10 |
9
|
fveq2d |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) → ( Base ‘ 𝑐 ) = ( Base ‘ 𝐶 ) ) |
| 11 |
10 1
|
eqtr4di |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) → ( Base ‘ 𝑐 ) = 𝐵 ) |
| 12 |
11
|
raleqdv |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝑔 𝑦 ) ) ) |
| 13 |
11 12
|
raleqbidv |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝑔 𝑦 ) ) ) |
| 14 |
8 13
|
anbi12d |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) → ( ( 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ) ↔ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝑔 𝑦 ) ) ) ) |
| 15 |
14
|
opabbidv |
⊢ ( ( 𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ) → { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝑔 𝑦 ) ) } ) |
| 16 |
|
df-fth |
⊢ Faith = ( 𝑐 ∈ Cat , 𝑑 ∈ Cat ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( 𝑐 Func 𝑑 ) 𝑔 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑐 ) ∀ 𝑦 ∈ ( Base ‘ 𝑐 ) Fun ◡ ( 𝑥 𝑔 𝑦 ) ) } ) |
| 17 |
|
ovex |
⊢ ( 𝐶 Func 𝐷 ) ∈ V |
| 18 |
|
simpl |
⊢ ( ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝑔 𝑦 ) ) → 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ) |
| 19 |
18
|
ssopab2i |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝑔 𝑦 ) ) } ⊆ { 〈 𝑓 , 𝑔 〉 ∣ 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 } |
| 20 |
|
opabss |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 } ⊆ ( 𝐶 Func 𝐷 ) |
| 21 |
19 20
|
sstri |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝑔 𝑦 ) ) } ⊆ ( 𝐶 Func 𝐷 ) |
| 22 |
17 21
|
ssexi |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝑔 𝑦 ) ) } ∈ V |
| 23 |
15 16 22
|
ovmpoa |
⊢ ( ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( 𝐶 Faith 𝐷 ) = { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝑔 𝑦 ) ) } ) |
| 24 |
6 23
|
syl |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( 𝐶 Faith 𝐷 ) = { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝑔 𝑦 ) ) } ) |
| 25 |
24
|
breqd |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ↔ 𝐹 { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝑔 𝑦 ) ) } 𝐺 ) ) |
| 26 |
|
relfunc |
⊢ Rel ( 𝐶 Func 𝐷 ) |
| 27 |
26
|
brrelex12i |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) |
| 28 |
|
breq12 |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ↔ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ) |
| 29 |
|
simpr |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → 𝑔 = 𝐺 ) |
| 30 |
29
|
oveqd |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑥 𝑔 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) |
| 31 |
30
|
cnveqd |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ◡ ( 𝑥 𝑔 𝑦 ) = ◡ ( 𝑥 𝐺 𝑦 ) ) |
| 32 |
31
|
funeqd |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( Fun ◡ ( 𝑥 𝑔 𝑦 ) ↔ Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) |
| 33 |
32
|
2ralbidv |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝑔 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) |
| 34 |
28 33
|
anbi12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝑔 𝑦 ) ) ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) ) |
| 35 |
|
eqid |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝑔 𝑦 ) ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝑔 𝑦 ) ) } |
| 36 |
34 35
|
brabga |
⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 𝐹 { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝑔 𝑦 ) ) } 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) ) |
| 37 |
27 36
|
syl |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( 𝐹 { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝑔 𝑦 ) ) } 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) ) |
| 38 |
25 37
|
bitrd |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) ) |
| 39 |
38
|
bianabs |
⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 → ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) |
| 40 |
3 39
|
biadanii |
⊢ ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 Fun ◡ ( 𝑥 𝐺 𝑦 ) ) ) |