Metamath Proof Explorer


Theorem opabss

Description: The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996) (Proof shortened by Andrew Salmon, 9-Jul-2011)

Ref Expression
Assertion opabss { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝑅 𝑦 } ⊆ 𝑅

Proof

Step Hyp Ref Expression
1 df-opab { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝑅 𝑦 } = { 𝑧 ∣ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑥 𝑅 𝑦 ) }
2 df-br ( 𝑥 𝑅 𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑅 )
3 eleq1 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑧𝑅 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑅 ) )
4 3 biimpar ( ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑅 ) → 𝑧𝑅 )
5 2 4 sylan2b ( ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑥 𝑅 𝑦 ) → 𝑧𝑅 )
6 5 exlimivv ( ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑥 𝑅 𝑦 ) → 𝑧𝑅 )
7 6 abssi { 𝑧 ∣ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑥 𝑅 𝑦 ) } ⊆ 𝑅
8 1 7 eqsstri { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝑅 𝑦 } ⊆ 𝑅