Metamath Proof Explorer


Theorem biadanii

Description: Inference associated with biadani . Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011) (Proof shortened by BJ, 4-Mar-2023)

Ref Expression
Hypotheses biadani.1 ( 𝜑𝜓 )
biadanii.2 ( 𝜓 → ( 𝜑𝜒 ) )
Assertion biadanii ( 𝜑 ↔ ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 biadani.1 ( 𝜑𝜓 )
2 biadanii.2 ( 𝜓 → ( 𝜑𝜒 ) )
3 1 biadani ( ( 𝜓 → ( 𝜑𝜒 ) ) ↔ ( 𝜑 ↔ ( 𝜓𝜒 ) ) )
4 2 3 mpbi ( 𝜑 ↔ ( 𝜓𝜒 ) )