Metamath Proof Explorer


Theorem biadanii

Description: Inference associated with biadani . Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011) (Proof shortened by BJ, 4-Mar-2023)

Ref Expression
Hypotheses biadani.1
|- ( ph -> ps )
biadanii.2
|- ( ps -> ( ph <-> ch ) )
Assertion biadanii
|- ( ph <-> ( ps /\ ch ) )

Proof

Step Hyp Ref Expression
1 biadani.1
 |-  ( ph -> ps )
2 biadanii.2
 |-  ( ps -> ( ph <-> ch ) )
3 1 biadani
 |-  ( ( ps -> ( ph <-> ch ) ) <-> ( ph <-> ( ps /\ ch ) ) )
4 2 3 mpbi
 |-  ( ph <-> ( ps /\ ch ) )