Metamath Proof Explorer


Theorem uptrar

Description: Universal property and fully faithful functor. (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Hypotheses uptra.y ( 𝜑 → ( ( 1st𝐾 ) ‘ 𝑋 ) = 𝑌 )
uptra.k ( 𝜑𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) )
uptra.g ( 𝜑 → ( 𝐾func 𝐹 ) = 𝐺 )
uptra.b 𝐵 = ( Base ‘ 𝐷 )
uptra.x ( 𝜑𝑋𝐵 )
uptra.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
uptrar.m ( 𝜑 → ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) ‘ 𝑁 ) = 𝑀 )
uptrar.z ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 )
Assertion uptrar ( 𝜑𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 )

Proof

Step Hyp Ref Expression
1 uptra.y ( 𝜑 → ( ( 1st𝐾 ) ‘ 𝑋 ) = 𝑌 )
2 uptra.k ( 𝜑𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) )
3 uptra.g ( 𝜑 → ( 𝐾func 𝐹 ) = 𝐺 )
4 uptra.b 𝐵 = ( Base ‘ 𝐷 )
5 uptra.x ( 𝜑𝑋𝐵 )
6 uptra.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
7 uptrar.m ( 𝜑 → ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) ‘ 𝑁 ) = 𝑀 )
8 uptrar.z ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 )
9 1 adantr ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → ( ( 1st𝐾 ) ‘ 𝑋 ) = 𝑌 )
10 2 adantr ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → 𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) )
11 3 adantr ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → ( 𝐾func 𝐹 ) = 𝐺 )
12 5 adantr ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → 𝑋𝐵 )
13 6 adantr ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) )
14 7 adantr ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) ‘ 𝑁 ) = 𝑀 )
15 14 fveq2d ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) ‘ ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) ‘ 𝑁 ) ) = ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) ‘ 𝑀 ) )
16 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
17 eqid ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 )
18 relfull Rel ( 𝐷 Full 𝐸 )
19 relin1 ( Rel ( 𝐷 Full 𝐸 ) → Rel ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) )
20 18 19 ax-mp Rel ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) )
21 1st2ndbr ( ( Rel ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ∧ 𝐾 ∈ ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ) → ( 1st𝐾 ) ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ( 2nd𝐾 ) )
22 20 2 21 sylancr ( 𝜑 → ( 1st𝐾 ) ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ( 2nd𝐾 ) )
23 22 adantr ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → ( 1st𝐾 ) ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ( 2nd𝐾 ) )
24 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
25 13 func1st2nd ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
26 24 4 25 funcf1 ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → ( 1st𝐹 ) : ( Base ‘ 𝐶 ) ⟶ 𝐵 )
27 simpr ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → 𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 )
28 27 up1st2nd ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → 𝑍 ( ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 )
29 28 24 uprcl4 ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → 𝑍 ∈ ( Base ‘ 𝐶 ) )
30 26 29 ffvelcdmd ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → ( ( 1st𝐹 ) ‘ 𝑍 ) ∈ 𝐵 )
31 4 16 17 23 12 30 ffthf1o ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) : ( 𝑋 ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) –1-1-onto→ ( ( ( 1st𝐾 ) ‘ 𝑋 ) ( Hom ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝐹 ) ‘ 𝑍 ) ) ) )
32 inss1 ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ⊆ ( 𝐷 Full 𝐸 )
33 fullfunc ( 𝐷 Full 𝐸 ) ⊆ ( 𝐷 Func 𝐸 )
34 32 33 sstri ( ( 𝐷 Full 𝐸 ) ∩ ( 𝐷 Faith 𝐸 ) ) ⊆ ( 𝐷 Func 𝐸 )
35 34 2 sselid ( 𝜑𝐾 ∈ ( 𝐷 Func 𝐸 ) )
36 35 adantr ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → 𝐾 ∈ ( 𝐷 Func 𝐸 ) )
37 24 13 36 29 cofu1 ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → ( ( 1st ‘ ( 𝐾func 𝐹 ) ) ‘ 𝑍 ) = ( ( 1st𝐾 ) ‘ ( ( 1st𝐹 ) ‘ 𝑍 ) ) )
38 11 fveq2d ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → ( 1st ‘ ( 𝐾func 𝐹 ) ) = ( 1st𝐺 ) )
39 38 fveq1d ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → ( ( 1st ‘ ( 𝐾func 𝐹 ) ) ‘ 𝑍 ) = ( ( 1st𝐺 ) ‘ 𝑍 ) )
40 37 39 eqtr3d ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → ( ( 1st𝐾 ) ‘ ( ( 1st𝐹 ) ‘ 𝑍 ) ) = ( ( 1st𝐺 ) ‘ 𝑍 ) )
41 9 40 oveq12d ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → ( ( ( 1st𝐾 ) ‘ 𝑋 ) ( Hom ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝐹 ) ‘ 𝑍 ) ) ) = ( 𝑌 ( Hom ‘ 𝐸 ) ( ( 1st𝐺 ) ‘ 𝑍 ) ) )
42 41 f1oeq3d ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) : ( 𝑋 ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) –1-1-onto→ ( ( ( 1st𝐾 ) ‘ 𝑋 ) ( Hom ‘ 𝐸 ) ( ( 1st𝐾 ) ‘ ( ( 1st𝐹 ) ‘ 𝑍 ) ) ) ↔ ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) : ( 𝑋 ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) –1-1-onto→ ( 𝑌 ( Hom ‘ 𝐸 ) ( ( 1st𝐺 ) ‘ 𝑍 ) ) ) )
43 31 42 mpbid ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) : ( 𝑋 ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) –1-1-onto→ ( 𝑌 ( Hom ‘ 𝐸 ) ( ( 1st𝐺 ) ‘ 𝑍 ) ) )
44 28 17 uprcl5 ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → 𝑁 ∈ ( 𝑌 ( Hom ‘ 𝐸 ) ( ( 1st𝐺 ) ‘ 𝑍 ) ) )
45 f1ocnvfv2 ( ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) : ( 𝑋 ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) –1-1-onto→ ( 𝑌 ( Hom ‘ 𝐸 ) ( ( 1st𝐺 ) ‘ 𝑍 ) ) ∧ 𝑁 ∈ ( 𝑌 ( Hom ‘ 𝐸 ) ( ( 1st𝐺 ) ‘ 𝑍 ) ) ) → ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) ‘ ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) ‘ 𝑁 ) ) = 𝑁 )
46 43 44 45 syl2anc ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) ‘ ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) ‘ 𝑁 ) ) = 𝑁 )
47 15 46 eqtr3d ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) ‘ 𝑀 ) = 𝑁 )
48 f1ocnvdm ( ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) : ( 𝑋 ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) –1-1-onto→ ( 𝑌 ( Hom ‘ 𝐸 ) ( ( 1st𝐺 ) ‘ 𝑍 ) ) ∧ 𝑁 ∈ ( 𝑌 ( Hom ‘ 𝐸 ) ( ( 1st𝐺 ) ‘ 𝑍 ) ) ) → ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) ‘ 𝑁 ) ∈ ( 𝑋 ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) )
49 43 44 48 syl2anc ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → ( ( 𝑋 ( 2nd𝐾 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) ‘ 𝑁 ) ∈ ( 𝑋 ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) )
50 14 49 eqeltrrd ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → 𝑀 ∈ ( 𝑋 ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) )
51 9 10 11 4 12 13 47 16 50 uptra ( ( 𝜑𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) → ( 𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) )
52 8 51 mpdan ( 𝜑 → ( 𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀𝑍 ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) 𝑁 ) )
53 8 52 mpbird ( 𝜑𝑍 ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) 𝑀 )