| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uptra.y |
|- ( ph -> ( ( 1st ` K ) ` X ) = Y ) |
| 2 |
|
uptra.k |
|- ( ph -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
| 3 |
|
uptra.g |
|- ( ph -> ( K o.func F ) = G ) |
| 4 |
|
uptra.b |
|- B = ( Base ` D ) |
| 5 |
|
uptra.x |
|- ( ph -> X e. B ) |
| 6 |
|
uptra.f |
|- ( ph -> F e. ( C Func D ) ) |
| 7 |
|
uptrar.m |
|- ( ph -> ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` N ) = M ) |
| 8 |
|
uptrar.z |
|- ( ph -> Z ( G ( C UP E ) Y ) N ) |
| 9 |
1
|
adantr |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( ( 1st ` K ) ` X ) = Y ) |
| 10 |
2
|
adantr |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
| 11 |
3
|
adantr |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( K o.func F ) = G ) |
| 12 |
5
|
adantr |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> X e. B ) |
| 13 |
6
|
adantr |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> F e. ( C Func D ) ) |
| 14 |
7
|
adantr |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` N ) = M ) |
| 15 |
14
|
fveq2d |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` N ) ) = ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` M ) ) |
| 16 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 17 |
|
eqid |
|- ( Hom ` E ) = ( Hom ` E ) |
| 18 |
|
relfull |
|- Rel ( D Full E ) |
| 19 |
|
relin1 |
|- ( Rel ( D Full E ) -> Rel ( ( D Full E ) i^i ( D Faith E ) ) ) |
| 20 |
18 19
|
ax-mp |
|- Rel ( ( D Full E ) i^i ( D Faith E ) ) |
| 21 |
|
1st2ndbr |
|- ( ( Rel ( ( D Full E ) i^i ( D Faith E ) ) /\ K e. ( ( D Full E ) i^i ( D Faith E ) ) ) -> ( 1st ` K ) ( ( D Full E ) i^i ( D Faith E ) ) ( 2nd ` K ) ) |
| 22 |
20 2 21
|
sylancr |
|- ( ph -> ( 1st ` K ) ( ( D Full E ) i^i ( D Faith E ) ) ( 2nd ` K ) ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( 1st ` K ) ( ( D Full E ) i^i ( D Faith E ) ) ( 2nd ` K ) ) |
| 24 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 25 |
13
|
func1st2nd |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 26 |
24 4 25
|
funcf1 |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( 1st ` F ) : ( Base ` C ) --> B ) |
| 27 |
|
simpr |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> Z ( G ( C UP E ) Y ) N ) |
| 28 |
27
|
up1st2nd |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> Z ( <. ( 1st ` G ) , ( 2nd ` G ) >. ( C UP E ) Y ) N ) |
| 29 |
28 24
|
uprcl4 |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> Z e. ( Base ` C ) ) |
| 30 |
26 29
|
ffvelcdmd |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( ( 1st ` F ) ` Z ) e. B ) |
| 31 |
4 16 17 23 12 30
|
ffthf1o |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) : ( X ( Hom ` D ) ( ( 1st ` F ) ` Z ) ) -1-1-onto-> ( ( ( 1st ` K ) ` X ) ( Hom ` E ) ( ( 1st ` K ) ` ( ( 1st ` F ) ` Z ) ) ) ) |
| 32 |
|
inss1 |
|- ( ( D Full E ) i^i ( D Faith E ) ) C_ ( D Full E ) |
| 33 |
|
fullfunc |
|- ( D Full E ) C_ ( D Func E ) |
| 34 |
32 33
|
sstri |
|- ( ( D Full E ) i^i ( D Faith E ) ) C_ ( D Func E ) |
| 35 |
34 2
|
sselid |
|- ( ph -> K e. ( D Func E ) ) |
| 36 |
35
|
adantr |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> K e. ( D Func E ) ) |
| 37 |
24 13 36 29
|
cofu1 |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( ( 1st ` ( K o.func F ) ) ` Z ) = ( ( 1st ` K ) ` ( ( 1st ` F ) ` Z ) ) ) |
| 38 |
11
|
fveq2d |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( 1st ` ( K o.func F ) ) = ( 1st ` G ) ) |
| 39 |
38
|
fveq1d |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( ( 1st ` ( K o.func F ) ) ` Z ) = ( ( 1st ` G ) ` Z ) ) |
| 40 |
37 39
|
eqtr3d |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( ( 1st ` K ) ` ( ( 1st ` F ) ` Z ) ) = ( ( 1st ` G ) ` Z ) ) |
| 41 |
9 40
|
oveq12d |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( ( ( 1st ` K ) ` X ) ( Hom ` E ) ( ( 1st ` K ) ` ( ( 1st ` F ) ` Z ) ) ) = ( Y ( Hom ` E ) ( ( 1st ` G ) ` Z ) ) ) |
| 42 |
41
|
f1oeq3d |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) : ( X ( Hom ` D ) ( ( 1st ` F ) ` Z ) ) -1-1-onto-> ( ( ( 1st ` K ) ` X ) ( Hom ` E ) ( ( 1st ` K ) ` ( ( 1st ` F ) ` Z ) ) ) <-> ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) : ( X ( Hom ` D ) ( ( 1st ` F ) ` Z ) ) -1-1-onto-> ( Y ( Hom ` E ) ( ( 1st ` G ) ` Z ) ) ) ) |
| 43 |
31 42
|
mpbid |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) : ( X ( Hom ` D ) ( ( 1st ` F ) ` Z ) ) -1-1-onto-> ( Y ( Hom ` E ) ( ( 1st ` G ) ` Z ) ) ) |
| 44 |
28 17
|
uprcl5 |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> N e. ( Y ( Hom ` E ) ( ( 1st ` G ) ` Z ) ) ) |
| 45 |
|
f1ocnvfv2 |
|- ( ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) : ( X ( Hom ` D ) ( ( 1st ` F ) ` Z ) ) -1-1-onto-> ( Y ( Hom ` E ) ( ( 1st ` G ) ` Z ) ) /\ N e. ( Y ( Hom ` E ) ( ( 1st ` G ) ` Z ) ) ) -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` N ) ) = N ) |
| 46 |
43 44 45
|
syl2anc |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` N ) ) = N ) |
| 47 |
15 46
|
eqtr3d |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` M ) = N ) |
| 48 |
|
f1ocnvdm |
|- ( ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) : ( X ( Hom ` D ) ( ( 1st ` F ) ` Z ) ) -1-1-onto-> ( Y ( Hom ` E ) ( ( 1st ` G ) ` Z ) ) /\ N e. ( Y ( Hom ` E ) ( ( 1st ` G ) ` Z ) ) ) -> ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` N ) e. ( X ( Hom ` D ) ( ( 1st ` F ) ` Z ) ) ) |
| 49 |
43 44 48
|
syl2anc |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` Z ) ) ` N ) e. ( X ( Hom ` D ) ( ( 1st ` F ) ` Z ) ) ) |
| 50 |
14 49
|
eqeltrrd |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> M e. ( X ( Hom ` D ) ( ( 1st ` F ) ` Z ) ) ) |
| 51 |
9 10 11 4 12 13 47 16 50
|
uptra |
|- ( ( ph /\ Z ( G ( C UP E ) Y ) N ) -> ( Z ( F ( C UP D ) X ) M <-> Z ( G ( C UP E ) Y ) N ) ) |
| 52 |
8 51
|
mpdan |
|- ( ph -> ( Z ( F ( C UP D ) X ) M <-> Z ( G ( C UP E ) Y ) N ) ) |
| 53 |
8 52
|
mpbird |
|- ( ph -> Z ( F ( C UP D ) X ) M ) |