| Step |
Hyp |
Ref |
Expression |
| 1 |
|
up1st2nd.1 |
|- ( ph -> X ( F ( D UP E ) W ) M ) |
| 2 |
|
relfunc |
|- Rel ( D Func E ) |
| 3 |
|
df-br |
|- ( X ( F ( D UP E ) W ) M <-> <. X , M >. e. ( F ( D UP E ) W ) ) |
| 4 |
1 3
|
sylib |
|- ( ph -> <. X , M >. e. ( F ( D UP E ) W ) ) |
| 5 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 6 |
5
|
uprcl |
|- ( <. X , M >. e. ( F ( D UP E ) W ) -> ( F e. ( D Func E ) /\ W e. ( Base ` E ) ) ) |
| 7 |
4 6
|
syl |
|- ( ph -> ( F e. ( D Func E ) /\ W e. ( Base ` E ) ) ) |
| 8 |
7
|
simpld |
|- ( ph -> F e. ( D Func E ) ) |
| 9 |
|
1st2nd |
|- ( ( Rel ( D Func E ) /\ F e. ( D Func E ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 10 |
2 8 9
|
sylancr |
|- ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
| 11 |
10
|
oveq1d |
|- ( ph -> ( F ( D UP E ) W ) = ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( D UP E ) W ) ) |
| 12 |
11 1
|
breqdi |
|- ( ph -> X ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( D UP E ) W ) M ) |