| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							uprcl2.x | 
							 |-  ( ph -> X ( <. F , G >. ( D UP E ) W ) M )  | 
						
						
							| 2 | 
							
								
							 | 
							uprcl5.j | 
							 |-  J = ( Hom ` E )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` D ) = ( Base ` D )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` E ) = ( Base ` E )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							 |-  ( Hom ` D ) = ( Hom ` D )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							 |-  ( comp ` E ) = ( comp ` E )  | 
						
						
							| 7 | 
							
								1 4
							 | 
							uprcl3 | 
							 |-  ( ph -> W e. ( Base ` E ) )  | 
						
						
							| 8 | 
							
								1
							 | 
							uprcl2 | 
							 |-  ( ph -> F ( D Func E ) G )  | 
						
						
							| 9 | 
							
								3 4 5 2 6 7 8
							 | 
							isuplem | 
							 |-  ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> ( ( X e. ( Base ` D ) /\ M e. ( W J ( F ` X ) ) ) /\ A. y e. ( Base ` D ) A. g e. ( W J ( F ` y ) ) E! k e. ( X ( Hom ` D ) y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` y ) ) M ) ) ) )  | 
						
						
							| 10 | 
							
								1 9
							 | 
							mpbid | 
							 |-  ( ph -> ( ( X e. ( Base ` D ) /\ M e. ( W J ( F ` X ) ) ) /\ A. y e. ( Base ` D ) A. g e. ( W J ( F ` y ) ) E! k e. ( X ( Hom ` D ) y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` y ) ) M ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							simplrd | 
							 |-  ( ph -> M e. ( W J ( F ` X ) ) )  |