Step |
Hyp |
Ref |
Expression |
1 |
|
uprcl2.x |
|- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) |
2 |
|
uprcl3.c |
|- C = ( Base ` E ) |
3 |
|
df-br |
|- ( X ( <. F , G >. ( D UP E ) W ) M <-> <. X , M >. e. ( <. F , G >. ( D UP E ) W ) ) |
4 |
3
|
biimpi |
|- ( X ( <. F , G >. ( D UP E ) W ) M -> <. X , M >. e. ( <. F , G >. ( D UP E ) W ) ) |
5 |
2
|
uprcl |
|- ( <. X , M >. e. ( <. F , G >. ( D UP E ) W ) -> ( <. F , G >. e. ( D Func E ) /\ W e. C ) ) |
6 |
5
|
simprd |
|- ( <. X , M >. e. ( <. F , G >. ( D UP E ) W ) -> W e. C ) |
7 |
1 4 6
|
3syl |
|- ( ph -> W e. C ) |