| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							uprcl2.x | 
							 |-  ( ph -> X ( <. F , G >. ( D UP E ) W ) M )  | 
						
						
							| 2 | 
							
								
							 | 
							uprcl3.c | 
							 |-  C = ( Base ` E )  | 
						
						
							| 3 | 
							
								
							 | 
							df-br | 
							 |-  ( X ( <. F , G >. ( D UP E ) W ) M <-> <. X , M >. e. ( <. F , G >. ( D UP E ) W ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							biimpi | 
							 |-  ( X ( <. F , G >. ( D UP E ) W ) M -> <. X , M >. e. ( <. F , G >. ( D UP E ) W ) )  | 
						
						
							| 5 | 
							
								2
							 | 
							uprcl | 
							 |-  ( <. X , M >. e. ( <. F , G >. ( D UP E ) W ) -> ( <. F , G >. e. ( D Func E ) /\ W e. C ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							simprd | 
							 |-  ( <. X , M >. e. ( <. F , G >. ( D UP E ) W ) -> W e. C )  | 
						
						
							| 7 | 
							
								1 4 6
							 | 
							3syl | 
							 |-  ( ph -> W e. C )  |