Step |
Hyp |
Ref |
Expression |
1 |
|
uprcl2.x |
|- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) |
2 |
|
uprcl4.b |
|- B = ( Base ` D ) |
3 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
4 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
5 |
|
eqid |
|- ( Hom ` E ) = ( Hom ` E ) |
6 |
|
eqid |
|- ( comp ` E ) = ( comp ` E ) |
7 |
1 3
|
uprcl3 |
|- ( ph -> W e. ( Base ` E ) ) |
8 |
1
|
uprcl2 |
|- ( ph -> F ( D Func E ) G ) |
9 |
2 3 4 5 6 7 8
|
isuplem |
|- ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> ( ( X e. B /\ M e. ( W ( Hom ` E ) ( F ` X ) ) ) /\ A. y e. B A. g e. ( W ( Hom ` E ) ( F ` y ) ) E! k e. ( X ( Hom ` D ) y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` y ) ) M ) ) ) ) |
10 |
1 9
|
mpbid |
|- ( ph -> ( ( X e. B /\ M e. ( W ( Hom ` E ) ( F ` X ) ) ) /\ A. y e. B A. g e. ( W ( Hom ` E ) ( F ` y ) ) E! k e. ( X ( Hom ` D ) y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` y ) ) M ) ) ) |
11 |
10
|
simplld |
|- ( ph -> X e. B ) |