Metamath Proof Explorer


Theorem uprcl2

Description: Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025)

Ref Expression
Hypothesis uprcl2.x
|- ( ph -> X ( <. F , G >. ( D UP E ) W ) M )
Assertion uprcl2
|- ( ph -> F ( D Func E ) G )

Proof

Step Hyp Ref Expression
1 uprcl2.x
 |-  ( ph -> X ( <. F , G >. ( D UP E ) W ) M )
2 df-br
 |-  ( X ( <. F , G >. ( D UP E ) W ) M <-> <. X , M >. e. ( <. F , G >. ( D UP E ) W ) )
3 2 biimpi
 |-  ( X ( <. F , G >. ( D UP E ) W ) M -> <. X , M >. e. ( <. F , G >. ( D UP E ) W ) )
4 eqid
 |-  ( Base ` E ) = ( Base ` E )
5 4 uprcl
 |-  ( <. X , M >. e. ( <. F , G >. ( D UP E ) W ) -> ( <. F , G >. e. ( D Func E ) /\ W e. ( Base ` E ) ) )
6 5 simpld
 |-  ( <. X , M >. e. ( <. F , G >. ( D UP E ) W ) -> <. F , G >. e. ( D Func E ) )
7 df-br
 |-  ( F ( D Func E ) G <-> <. F , G >. e. ( D Func E ) )
8 7 biimpri
 |-  ( <. F , G >. e. ( D Func E ) -> F ( D Func E ) G )
9 1 3 6 8 4syl
 |-  ( ph -> F ( D Func E ) G )