Step |
Hyp |
Ref |
Expression |
1 |
|
uprcl2.x |
|- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) |
2 |
|
df-br |
|- ( X ( <. F , G >. ( D UP E ) W ) M <-> <. X , M >. e. ( <. F , G >. ( D UP E ) W ) ) |
3 |
2
|
biimpi |
|- ( X ( <. F , G >. ( D UP E ) W ) M -> <. X , M >. e. ( <. F , G >. ( D UP E ) W ) ) |
4 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
5 |
4
|
uprcl |
|- ( <. X , M >. e. ( <. F , G >. ( D UP E ) W ) -> ( <. F , G >. e. ( D Func E ) /\ W e. ( Base ` E ) ) ) |
6 |
5
|
simpld |
|- ( <. X , M >. e. ( <. F , G >. ( D UP E ) W ) -> <. F , G >. e. ( D Func E ) ) |
7 |
|
df-br |
|- ( F ( D Func E ) G <-> <. F , G >. e. ( D Func E ) ) |
8 |
7
|
biimpri |
|- ( <. F , G >. e. ( D Func E ) -> F ( D Func E ) G ) |
9 |
1 3 6 8
|
4syl |
|- ( ph -> F ( D Func E ) G ) |