Step |
Hyp |
Ref |
Expression |
1 |
|
uprcl2.x |
⊢ ( 𝜑 → 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑀 ) |
2 |
|
uprcl4.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
4 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
5 |
|
eqid |
⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) |
6 |
|
eqid |
⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) |
7 |
1 3
|
uprcl3 |
⊢ ( 𝜑 → 𝑊 ∈ ( Base ‘ 𝐸 ) ) |
8 |
1
|
uprcl2 |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
9 |
2 3 4 5 6 7 8
|
isuplem |
⊢ ( 𝜑 → ( 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑀 ↔ ( ( 𝑋 ∈ 𝐵 ∧ 𝑀 ∈ ( 𝑊 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐷 ) 𝑦 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) ) ) |
10 |
1 9
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑋 ∈ 𝐵 ∧ 𝑀 ∈ ( 𝑊 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 ( Hom ‘ 𝐷 ) 𝑦 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) ) |
11 |
10
|
simplld |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |