Metamath Proof Explorer


Theorem uprcl3

Description: Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025)

Ref Expression
Hypotheses uprcl2.x ( 𝜑𝑋 ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑀 )
uprcl3.c 𝐶 = ( Base ‘ 𝐸 )
Assertion uprcl3 ( 𝜑𝑊𝐶 )

Proof

Step Hyp Ref Expression
1 uprcl2.x ( 𝜑𝑋 ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑀 )
2 uprcl3.c 𝐶 = ( Base ‘ 𝐸 )
3 df-br ( 𝑋 ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑀 ↔ ⟨ 𝑋 , 𝑀 ⟩ ∈ ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝐷 UP 𝐸 ) 𝑊 ) )
4 3 biimpi ( 𝑋 ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑀 → ⟨ 𝑋 , 𝑀 ⟩ ∈ ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝐷 UP 𝐸 ) 𝑊 ) )
5 2 uprcl ( ⟨ 𝑋 , 𝑀 ⟩ ∈ ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝐷 UP 𝐸 ) 𝑊 ) → ( ⟨ 𝐹 , 𝐺 ⟩ ∈ ( 𝐷 Func 𝐸 ) ∧ 𝑊𝐶 ) )
6 5 simprd ( ⟨ 𝑋 , 𝑀 ⟩ ∈ ( ⟨ 𝐹 , 𝐺 ⟩ ( 𝐷 UP 𝐸 ) 𝑊 ) → 𝑊𝐶 )
7 1 4 6 3syl ( 𝜑𝑊𝐶 )