Step |
Hyp |
Ref |
Expression |
1 |
|
upfval.b |
⊢ 𝐵 = ( Base ‘ 𝐷 ) |
2 |
|
upfval.c |
⊢ 𝐶 = ( Base ‘ 𝐸 ) |
3 |
|
upfval.h |
⊢ 𝐻 = ( Hom ‘ 𝐷 ) |
4 |
|
upfval.j |
⊢ 𝐽 = ( Hom ‘ 𝐸 ) |
5 |
|
upfval.o |
⊢ 𝑂 = ( comp ‘ 𝐸 ) |
6 |
|
upfval2.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝐶 ) |
7 |
|
upfval3.f |
⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) |
8 |
1 2 3 4 5 6 7
|
upfval3 |
⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) = { 〈 𝑥 , 𝑚 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑚 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) } ) |
9 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑦 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
11 |
10
|
opeq2d |
⊢ ( 𝑥 = 𝑋 → 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 = 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 ) |
12 |
11
|
oveq1d |
⊢ ( 𝑥 = 𝑋 → ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) = ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) ) |
13 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 𝐺 𝑦 ) = ( 𝑋 𝐺 𝑦 ) ) |
14 |
13
|
fveq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) = ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ) |
15 |
|
eqidd |
⊢ ( 𝑥 = 𝑋 → 𝑚 = 𝑚 ) |
16 |
12 14 15
|
oveq123d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) |
17 |
16
|
eqeq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ↔ 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) ) |
18 |
9 17
|
reueqbidv |
⊢ ( 𝑥 = 𝑋 → ( ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ↔ ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) ) |
19 |
18
|
2ralbidv |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) ) |
20 |
|
oveq2 |
⊢ ( 𝑚 = 𝑀 → ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) |
21 |
20
|
eqeq2d |
⊢ ( 𝑚 = 𝑀 → ( 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ↔ 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) ) |
22 |
21
|
reubidv |
⊢ ( 𝑚 = 𝑀 → ( ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ↔ ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) ) |
23 |
22
|
2ralbidv |
⊢ ( 𝑚 = 𝑀 → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) ) |
24 |
|
eqidd |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑚 = 𝑀 ) → 𝐵 = 𝐵 ) |
25 |
|
simpl |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑚 = 𝑀 ) → 𝑥 = 𝑋 ) |
26 |
25
|
fveq2d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑚 = 𝑀 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
27 |
26
|
oveq2d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑚 = 𝑀 ) → ( 𝑊 𝐽 ( 𝐹 ‘ 𝑥 ) ) = ( 𝑊 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) |
28 |
8 19 23 24 27
|
brab2ddw |
⊢ ( 𝜑 → ( 𝑋 ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑀 ↔ ( ( 𝑋 ∈ 𝐵 ∧ 𝑀 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑋 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) ) ) |