Metamath Proof Explorer


Theorem reueqbidv

Description: Formula-building rule for restricted existential uniqueness quantifier. Deduction form. General version of reubidv . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses reueqbidv.1 ( 𝜑𝐴 = 𝐵 )
reueqbidv.2 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion reueqbidv ( 𝜑 → ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑥𝐵 𝜒 ) )

Proof

Step Hyp Ref Expression
1 reueqbidv.1 ( 𝜑𝐴 = 𝐵 )
2 reueqbidv.2 ( 𝜑 → ( 𝜓𝜒 ) )
3 1 eleq2d ( 𝜑 → ( 𝑥𝐴𝑥𝐵 ) )
4 3 2 anbi12d ( 𝜑 → ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐵𝜒 ) ) )
5 4 eubidv ( 𝜑 → ( ∃! 𝑥 ( 𝑥𝐴𝜓 ) ↔ ∃! 𝑥 ( 𝑥𝐵𝜒 ) ) )
6 df-reu ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑥 ( 𝑥𝐴𝜓 ) )
7 df-reu ( ∃! 𝑥𝐵 𝜒 ↔ ∃! 𝑥 ( 𝑥𝐵𝜒 ) )
8 5 6 7 3bitr4g ( 𝜑 → ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑥𝐵 𝜒 ) )