Description: Formula-building rule for restricted existential uniqueness quantifier. Deduction form. General version of reubidv . (Contributed by GG, 1-Sep-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | reueqbidv.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
reueqbidv.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | ||
Assertion | reueqbidv | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑥 ∈ 𝐵 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reueqbidv.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
2 | reueqbidv.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
3 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
4 | 3 2 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) ) |
5 | 4 | eubidv | ⊢ ( 𝜑 → ( ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) ) |
6 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) | |
7 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐵 𝜒 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) | |
8 | 5 6 7 | 3bitr4g | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑥 ∈ 𝐵 𝜒 ) ) |