Description: Formula-building rule for restricted existential uniqueness quantifier. Deduction form. General version of reubidv . (Contributed by GG, 1-Sep-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | reueqbidv.1 | |- ( ph -> A = B ) |
|
reueqbidv.2 | |- ( ph -> ( ps <-> ch ) ) |
||
Assertion | reueqbidv | |- ( ph -> ( E! x e. A ps <-> E! x e. B ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reueqbidv.1 | |- ( ph -> A = B ) |
|
2 | reueqbidv.2 | |- ( ph -> ( ps <-> ch ) ) |
|
3 | 1 | eleq2d | |- ( ph -> ( x e. A <-> x e. B ) ) |
4 | 3 2 | anbi12d | |- ( ph -> ( ( x e. A /\ ps ) <-> ( x e. B /\ ch ) ) ) |
5 | 4 | eubidv | |- ( ph -> ( E! x ( x e. A /\ ps ) <-> E! x ( x e. B /\ ch ) ) ) |
6 | df-reu | |- ( E! x e. A ps <-> E! x ( x e. A /\ ps ) ) |
|
7 | df-reu | |- ( E! x e. B ch <-> E! x ( x e. B /\ ch ) ) |
|
8 | 5 6 7 | 3bitr4g | |- ( ph -> ( E! x e. A ps <-> E! x e. B ch ) ) |