Metamath Proof Explorer


Theorem reueqbidv

Description: Formula-building rule for restricted existential uniqueness quantifier. Deduction form. General version of reubidv . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses reueqbidv.1
|- ( ph -> A = B )
reueqbidv.2
|- ( ph -> ( ps <-> ch ) )
Assertion reueqbidv
|- ( ph -> ( E! x e. A ps <-> E! x e. B ch ) )

Proof

Step Hyp Ref Expression
1 reueqbidv.1
 |-  ( ph -> A = B )
2 reueqbidv.2
 |-  ( ph -> ( ps <-> ch ) )
3 1 eleq2d
 |-  ( ph -> ( x e. A <-> x e. B ) )
4 3 2 anbi12d
 |-  ( ph -> ( ( x e. A /\ ps ) <-> ( x e. B /\ ch ) ) )
5 4 eubidv
 |-  ( ph -> ( E! x ( x e. A /\ ps ) <-> E! x ( x e. B /\ ch ) ) )
6 df-reu
 |-  ( E! x e. A ps <-> E! x ( x e. A /\ ps ) )
7 df-reu
 |-  ( E! x e. B ch <-> E! x ( x e. B /\ ch ) )
8 5 6 7 3bitr4g
 |-  ( ph -> ( E! x e. A ps <-> E! x e. B ch ) )