Metamath Proof Explorer


Theorem reueqbidv

Description: Formula-building rule for restricted existential uniqueness quantifier. Deduction form. General version of reubidv . (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses reueqbidv.1 φ A = B
reueqbidv.2 φ ψ χ
Assertion reueqbidv φ ∃! x A ψ ∃! x B χ

Proof

Step Hyp Ref Expression
1 reueqbidv.1 φ A = B
2 reueqbidv.2 φ ψ χ
3 1 eleq2d φ x A x B
4 3 2 anbi12d φ x A ψ x B χ
5 4 eubidv φ ∃! x x A ψ ∃! x x B χ
6 df-reu ∃! x A ψ ∃! x x A ψ
7 df-reu ∃! x B χ ∃! x x B χ
8 5 6 7 3bitr4g φ ∃! x A ψ ∃! x B χ