| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							upfval.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐷 )  | 
						
						
							| 2 | 
							
								
							 | 
							upfval.c | 
							⊢ 𝐶  =  ( Base ‘ 𝐸 )  | 
						
						
							| 3 | 
							
								
							 | 
							upfval.h | 
							⊢ 𝐻  =  ( Hom  ‘ 𝐷 )  | 
						
						
							| 4 | 
							
								
							 | 
							upfval.j | 
							⊢ 𝐽  =  ( Hom  ‘ 𝐸 )  | 
						
						
							| 5 | 
							
								
							 | 
							upfval.o | 
							⊢ 𝑂  =  ( comp ‘ 𝐸 )  | 
						
						
							| 6 | 
							
								
							 | 
							upfval2.w | 
							⊢ ( 𝜑  →  𝑊  ∈  𝐶 )  | 
						
						
							| 7 | 
							
								
							 | 
							upfval3.f | 
							⊢ ( 𝜑  →  𝐹 ( 𝐷  Func  𝐸 ) 𝐺 )  | 
						
						
							| 8 | 
							
								
							 | 
							isup.x | 
							⊢ ( 𝜑  →  𝑋  ∈  𝐵 )  | 
						
						
							| 9 | 
							
								
							 | 
							isup.m | 
							⊢ ( 𝜑  →  𝑀  ∈  ( 𝑊 𝐽 ( 𝐹 ‘ 𝑋 ) ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							jca | 
							⊢ ( 𝜑  →  ( 𝑋  ∈  𝐵  ∧  𝑀  ∈  ( 𝑊 𝐽 ( 𝐹 ‘ 𝑋 ) ) ) )  | 
						
						
							| 11 | 
							
								1 2 3 4 5 6 7
							 | 
							isuplem | 
							⊢ ( 𝜑  →  ( 𝑋 ( 〈 𝐹 ,  𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑀  ↔  ( ( 𝑋  ∈  𝐵  ∧  𝑀  ∈  ( 𝑊 𝐽 ( 𝐹 ‘ 𝑋 ) ) )  ∧  ∀ 𝑦  ∈  𝐵 ∀ 𝑔  ∈  ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘  ∈  ( 𝑋 𝐻 𝑦 ) 𝑔  =  ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 ,  ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							mpbirand | 
							⊢ ( 𝜑  →  ( 𝑋 ( 〈 𝐹 ,  𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) 𝑀  ↔  ∀ 𝑦  ∈  𝐵 ∀ 𝑔  ∈  ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘  ∈  ( 𝑋 𝐻 𝑦 ) 𝑔  =  ( ( ( 𝑋 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 ,  ( 𝐹 ‘ 𝑋 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑀 ) ) )  |