Metamath Proof Explorer


Theorem isup

Description: The predicate "is a universal pair". (Contributed by Zhi Wang, 24-Sep-2025)

Ref Expression
Hypotheses upfval.b B = Base D
upfval.c C = Base E
upfval.h H = Hom D
upfval.j J = Hom E
upfval.o O = comp E
upfval2.w φ W C
upfval3.f φ F D Func E G
isup.x φ X B
isup.m φ M W J F X
Assertion isup Could not format assertion : No typesetting found for |- ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 upfval.b B = Base D
2 upfval.c C = Base E
3 upfval.h H = Hom D
4 upfval.j J = Hom E
5 upfval.o O = comp E
6 upfval2.w φ W C
7 upfval3.f φ F D Func E G
8 isup.x φ X B
9 isup.m φ M W J F X
10 8 9 jca φ X B M W J F X
11 1 2 3 4 5 6 7 isuplem Could not format ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> ( ( X e. B /\ M e. ( W J ( F ` X ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) ) ) : No typesetting found for |- ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> ( ( X e. B /\ M e. ( W J ( F ` X ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) ) ) with typecode |-
12 10 11 mpbirand Could not format ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) ) : No typesetting found for |- ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) ) with typecode |-