Description: The predicate "is a universal pair". (Contributed by Zhi Wang, 24-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upfval.b | |- B = ( Base ` D )  | 
					|
| upfval.c | |- C = ( Base ` E )  | 
					||
| upfval.h | |- H = ( Hom ` D )  | 
					||
| upfval.j | |- J = ( Hom ` E )  | 
					||
| upfval.o | |- O = ( comp ` E )  | 
					||
| upfval2.w | |- ( ph -> W e. C )  | 
					||
| upfval3.f | |- ( ph -> F ( D Func E ) G )  | 
					||
| isup.x | |- ( ph -> X e. B )  | 
					||
| isup.m | |- ( ph -> M e. ( W J ( F ` X ) ) )  | 
					||
| Assertion | isup | |- ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | upfval.b | |- B = ( Base ` D )  | 
						|
| 2 | upfval.c | |- C = ( Base ` E )  | 
						|
| 3 | upfval.h | |- H = ( Hom ` D )  | 
						|
| 4 | upfval.j | |- J = ( Hom ` E )  | 
						|
| 5 | upfval.o | |- O = ( comp ` E )  | 
						|
| 6 | upfval2.w | |- ( ph -> W e. C )  | 
						|
| 7 | upfval3.f | |- ( ph -> F ( D Func E ) G )  | 
						|
| 8 | isup.x | |- ( ph -> X e. B )  | 
						|
| 9 | isup.m | |- ( ph -> M e. ( W J ( F ` X ) ) )  | 
						|
| 10 | 8 9 | jca | |- ( ph -> ( X e. B /\ M e. ( W J ( F ` X ) ) ) )  | 
						
| 11 | 1 2 3 4 5 6 7 | isuplem | |- ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> ( ( X e. B /\ M e. ( W J ( F ` X ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) ) )  | 
						
| 12 | 10 11 | mpbirand | |- ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) )  |