Description: The predicate "is a universal pair". (Contributed by Zhi Wang, 24-Sep-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | upfval.b | |- B = ( Base ` D ) |
|
upfval.c | |- C = ( Base ` E ) |
||
upfval.h | |- H = ( Hom ` D ) |
||
upfval.j | |- J = ( Hom ` E ) |
||
upfval.o | |- O = ( comp ` E ) |
||
upfval2.w | |- ( ph -> W e. C ) |
||
upfval3.f | |- ( ph -> F ( D Func E ) G ) |
||
isup.x | |- ( ph -> X e. B ) |
||
isup.m | |- ( ph -> M e. ( W J ( F ` X ) ) ) |
||
Assertion | isup | |- ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upfval.b | |- B = ( Base ` D ) |
|
2 | upfval.c | |- C = ( Base ` E ) |
|
3 | upfval.h | |- H = ( Hom ` D ) |
|
4 | upfval.j | |- J = ( Hom ` E ) |
|
5 | upfval.o | |- O = ( comp ` E ) |
|
6 | upfval2.w | |- ( ph -> W e. C ) |
|
7 | upfval3.f | |- ( ph -> F ( D Func E ) G ) |
|
8 | isup.x | |- ( ph -> X e. B ) |
|
9 | isup.m | |- ( ph -> M e. ( W J ( F ` X ) ) ) |
|
10 | 8 9 | jca | |- ( ph -> ( X e. B /\ M e. ( W J ( F ` X ) ) ) ) |
11 | 1 2 3 4 5 6 7 | isuplem | |- ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> ( ( X e. B /\ M e. ( W J ( F ` X ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) ) ) |
12 | 10 11 | mpbirand | |- ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) ) |