Metamath Proof Explorer


Theorem isup

Description: The predicate "is a universal pair". (Contributed by Zhi Wang, 24-Sep-2025)

Ref Expression
Hypotheses upfval.b
|- B = ( Base ` D )
upfval.c
|- C = ( Base ` E )
upfval.h
|- H = ( Hom ` D )
upfval.j
|- J = ( Hom ` E )
upfval.o
|- O = ( comp ` E )
upfval2.w
|- ( ph -> W e. C )
upfval3.f
|- ( ph -> F ( D Func E ) G )
isup.x
|- ( ph -> X e. B )
isup.m
|- ( ph -> M e. ( W J ( F ` X ) ) )
Assertion isup
|- ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) )

Proof

Step Hyp Ref Expression
1 upfval.b
 |-  B = ( Base ` D )
2 upfval.c
 |-  C = ( Base ` E )
3 upfval.h
 |-  H = ( Hom ` D )
4 upfval.j
 |-  J = ( Hom ` E )
5 upfval.o
 |-  O = ( comp ` E )
6 upfval2.w
 |-  ( ph -> W e. C )
7 upfval3.f
 |-  ( ph -> F ( D Func E ) G )
8 isup.x
 |-  ( ph -> X e. B )
9 isup.m
 |-  ( ph -> M e. ( W J ( F ` X ) ) )
10 8 9 jca
 |-  ( ph -> ( X e. B /\ M e. ( W J ( F ` X ) ) ) )
11 1 2 3 4 5 6 7 isuplem
 |-  ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> ( ( X e. B /\ M e. ( W J ( F ` X ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) ) )
12 10 11 mpbirand
 |-  ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) )