| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uppropd.1 |
|- ( ph -> ( Homf ` A ) = ( Homf ` B ) ) |
| 2 |
|
uppropd.2 |
|- ( ph -> ( comf ` A ) = ( comf ` B ) ) |
| 3 |
|
uppropd.3 |
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
| 4 |
|
uppropd.4 |
|- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
| 5 |
|
uppropd.a |
|- ( ph -> A e. V ) |
| 6 |
|
uppropd.b |
|- ( ph -> B e. V ) |
| 7 |
|
uppropd.c |
|- ( ph -> C e. V ) |
| 8 |
|
uppropd.d |
|- ( ph -> D e. V ) |
| 9 |
1 2 3 4 5 6 7 8
|
funcpropd |
|- ( ph -> ( A Func C ) = ( B Func D ) ) |
| 10 |
3
|
homfeqbas |
|- ( ph -> ( Base ` C ) = ( Base ` D ) ) |
| 11 |
10
|
adantr |
|- ( ( ph /\ f e. ( A Func C ) ) -> ( Base ` C ) = ( Base ` D ) ) |
| 12 |
1
|
homfeqbas |
|- ( ph -> ( Base ` A ) = ( Base ` B ) ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) -> ( Base ` A ) = ( Base ` B ) ) |
| 14 |
13
|
adantr |
|- ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) -> ( Base ` A ) = ( Base ` B ) ) |
| 15 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 16 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 17 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 18 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 19 |
|
simprr |
|- ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) -> w e. ( Base ` C ) ) |
| 20 |
19
|
ad2antrr |
|- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) -> w e. ( Base ` C ) ) |
| 21 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
| 22 |
|
simprl |
|- ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) -> f e. ( A Func C ) ) |
| 23 |
22
|
func1st2nd |
|- ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) -> ( 1st ` f ) ( A Func C ) ( 2nd ` f ) ) |
| 24 |
21 15 23
|
funcf1 |
|- ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) -> ( 1st ` f ) : ( Base ` A ) --> ( Base ` C ) ) |
| 25 |
24
|
adantr |
|- ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) -> ( 1st ` f ) : ( Base ` A ) --> ( Base ` C ) ) |
| 26 |
25
|
ffvelcdmda |
|- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) -> ( ( 1st ` f ) ` y ) e. ( Base ` C ) ) |
| 27 |
15 16 17 18 20 26
|
homfeqval |
|- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) -> ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) = ( w ( Hom ` D ) ( ( 1st ` f ) ` y ) ) ) |
| 28 |
|
eqid |
|- ( Hom ` A ) = ( Hom ` A ) |
| 29 |
|
eqid |
|- ( Hom ` B ) = ( Hom ` B ) |
| 30 |
1
|
ad4antr |
|- ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) -> ( Homf ` A ) = ( Homf ` B ) ) |
| 31 |
|
simprl |
|- ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) -> x e. ( Base ` A ) ) |
| 32 |
31
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) -> x e. ( Base ` A ) ) |
| 33 |
|
simplr |
|- ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) -> y e. ( Base ` A ) ) |
| 34 |
21 28 29 30 32 33
|
homfeqval |
|- ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) -> ( x ( Hom ` A ) y ) = ( x ( Hom ` B ) y ) ) |
| 35 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 36 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
| 37 |
18
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) /\ k e. ( x ( Hom ` A ) y ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 38 |
4
|
ad5antr |
|- ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) /\ k e. ( x ( Hom ` A ) y ) ) -> ( comf ` C ) = ( comf ` D ) ) |
| 39 |
20
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) /\ k e. ( x ( Hom ` A ) y ) ) -> w e. ( Base ` C ) ) |
| 40 |
24
|
ffvelcdmda |
|- ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ x e. ( Base ` A ) ) -> ( ( 1st ` f ) ` x ) e. ( Base ` C ) ) |
| 41 |
40
|
adantrr |
|- ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) -> ( ( 1st ` f ) ` x ) e. ( Base ` C ) ) |
| 42 |
41
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) /\ k e. ( x ( Hom ` A ) y ) ) -> ( ( 1st ` f ) ` x ) e. ( Base ` C ) ) |
| 43 |
26
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) /\ k e. ( x ( Hom ` A ) y ) ) -> ( ( 1st ` f ) ` y ) e. ( Base ` C ) ) |
| 44 |
|
simprr |
|- ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) -> m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) |
| 45 |
44
|
ad3antrrr |
|- ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) /\ k e. ( x ( Hom ` A ) y ) ) -> m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) |
| 46 |
23
|
ad3antrrr |
|- ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) -> ( 1st ` f ) ( A Func C ) ( 2nd ` f ) ) |
| 47 |
21 28 16 46 32 33
|
funcf2 |
|- ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) -> ( x ( 2nd ` f ) y ) : ( x ( Hom ` A ) y ) --> ( ( ( 1st ` f ) ` x ) ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) |
| 48 |
47
|
ffvelcdmda |
|- ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) /\ k e. ( x ( Hom ` A ) y ) ) -> ( ( x ( 2nd ` f ) y ) ` k ) e. ( ( ( 1st ` f ) ` x ) ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) |
| 49 |
15 16 35 36 37 38 39 42 43 45 48
|
comfeqval |
|- ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) /\ k e. ( x ( Hom ` A ) y ) ) -> ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` C ) ( ( 1st ` f ) ` y ) ) m ) = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` D ) ( ( 1st ` f ) ` y ) ) m ) ) |
| 50 |
49
|
eqeq2d |
|- ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) /\ k e. ( x ( Hom ` A ) y ) ) -> ( g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` C ) ( ( 1st ` f ) ` y ) ) m ) <-> g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` D ) ( ( 1st ` f ) ` y ) ) m ) ) ) |
| 51 |
34 50
|
reueqbidva |
|- ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) /\ g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) ) -> ( E! k e. ( x ( Hom ` A ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` C ) ( ( 1st ` f ) ` y ) ) m ) <-> E! k e. ( x ( Hom ` B ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` D ) ( ( 1st ` f ) ` y ) ) m ) ) ) |
| 52 |
27 51
|
raleqbidva |
|- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) /\ y e. ( Base ` A ) ) -> ( A. g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` A ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` C ) ( ( 1st ` f ) ` y ) ) m ) <-> A. g e. ( w ( Hom ` D ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` B ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` D ) ( ( 1st ` f ) ` y ) ) m ) ) ) |
| 53 |
14 52
|
raleqbidva |
|- ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) ) -> ( A. y e. ( Base ` A ) A. g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` A ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` C ) ( ( 1st ` f ) ` y ) ) m ) <-> A. y e. ( Base ` B ) A. g e. ( w ( Hom ` D ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` B ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` D ) ( ( 1st ` f ) ` y ) ) m ) ) ) |
| 54 |
53
|
pm5.32da |
|- ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) -> ( ( ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` A ) A. g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` A ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` C ) ( ( 1st ` f ) ` y ) ) m ) ) <-> ( ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` B ) A. g e. ( w ( Hom ` D ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` B ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` D ) ( ( 1st ` f ) ` y ) ) m ) ) ) ) |
| 55 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ x e. ( Base ` A ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 56 |
|
simplrr |
|- ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ x e. ( Base ` A ) ) -> w e. ( Base ` C ) ) |
| 57 |
15 16 17 55 56 40
|
homfeqval |
|- ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ x e. ( Base ` A ) ) -> ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) = ( w ( Hom ` D ) ( ( 1st ` f ) ` x ) ) ) |
| 58 |
57
|
eleq2d |
|- ( ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) /\ x e. ( Base ` A ) ) -> ( m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) <-> m e. ( w ( Hom ` D ) ( ( 1st ` f ) ` x ) ) ) ) |
| 59 |
58
|
pm5.32da |
|- ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) -> ( ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) <-> ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` D ) ( ( 1st ` f ) ` x ) ) ) ) ) |
| 60 |
13
|
eleq2d |
|- ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) -> ( x e. ( Base ` A ) <-> x e. ( Base ` B ) ) ) |
| 61 |
60
|
anbi1d |
|- ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) -> ( ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` D ) ( ( 1st ` f ) ` x ) ) ) <-> ( x e. ( Base ` B ) /\ m e. ( w ( Hom ` D ) ( ( 1st ` f ) ` x ) ) ) ) ) |
| 62 |
59 61
|
bitrd |
|- ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) -> ( ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) <-> ( x e. ( Base ` B ) /\ m e. ( w ( Hom ` D ) ( ( 1st ` f ) ` x ) ) ) ) ) |
| 63 |
62
|
anbi1d |
|- ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) -> ( ( ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` B ) A. g e. ( w ( Hom ` D ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` B ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` D ) ( ( 1st ` f ) ` y ) ) m ) ) <-> ( ( x e. ( Base ` B ) /\ m e. ( w ( Hom ` D ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` B ) A. g e. ( w ( Hom ` D ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` B ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` D ) ( ( 1st ` f ) ` y ) ) m ) ) ) ) |
| 64 |
54 63
|
bitrd |
|- ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) -> ( ( ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` A ) A. g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` A ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` C ) ( ( 1st ` f ) ` y ) ) m ) ) <-> ( ( x e. ( Base ` B ) /\ m e. ( w ( Hom ` D ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` B ) A. g e. ( w ( Hom ` D ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` B ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` D ) ( ( 1st ` f ) ` y ) ) m ) ) ) ) |
| 65 |
64
|
opabbidv |
|- ( ( ph /\ ( f e. ( A Func C ) /\ w e. ( Base ` C ) ) ) -> { <. x , m >. | ( ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` A ) A. g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` A ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` C ) ( ( 1st ` f ) ` y ) ) m ) ) } = { <. x , m >. | ( ( x e. ( Base ` B ) /\ m e. ( w ( Hom ` D ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` B ) A. g e. ( w ( Hom ` D ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` B ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` D ) ( ( 1st ` f ) ` y ) ) m ) ) } ) |
| 66 |
9 11 65
|
mpoeq123dva |
|- ( ph -> ( f e. ( A Func C ) , w e. ( Base ` C ) |-> { <. x , m >. | ( ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` A ) A. g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` A ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` C ) ( ( 1st ` f ) ` y ) ) m ) ) } ) = ( f e. ( B Func D ) , w e. ( Base ` D ) |-> { <. x , m >. | ( ( x e. ( Base ` B ) /\ m e. ( w ( Hom ` D ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` B ) A. g e. ( w ( Hom ` D ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` B ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` D ) ( ( 1st ` f ) ` y ) ) m ) ) } ) ) |
| 67 |
21 15 28 16 35
|
upfval |
|- ( A UP C ) = ( f e. ( A Func C ) , w e. ( Base ` C ) |-> { <. x , m >. | ( ( x e. ( Base ` A ) /\ m e. ( w ( Hom ` C ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` A ) A. g e. ( w ( Hom ` C ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` A ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` C ) ( ( 1st ` f ) ` y ) ) m ) ) } ) |
| 68 |
|
eqid |
|- ( Base ` B ) = ( Base ` B ) |
| 69 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 70 |
68 69 29 17 36
|
upfval |
|- ( B UP D ) = ( f e. ( B Func D ) , w e. ( Base ` D ) |-> { <. x , m >. | ( ( x e. ( Base ` B ) /\ m e. ( w ( Hom ` D ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` B ) A. g e. ( w ( Hom ` D ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` B ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` D ) ( ( 1st ` f ) ` y ) ) m ) ) } ) |
| 71 |
66 67 70
|
3eqtr4g |
|- ( ph -> ( A UP C ) = ( B UP D ) ) |