Metamath Proof Explorer


Theorem uppropd

Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same universal pairs. (Contributed by Zhi Wang, 20-Nov-2025)

Ref Expression
Hypotheses uppropd.1 ( 𝜑 → ( Homf𝐴 ) = ( Homf𝐵 ) )
uppropd.2 ( 𝜑 → ( compf𝐴 ) = ( compf𝐵 ) )
uppropd.3 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
uppropd.4 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
uppropd.a ( 𝜑𝐴𝑉 )
uppropd.b ( 𝜑𝐵𝑉 )
uppropd.c ( 𝜑𝐶𝑉 )
uppropd.d ( 𝜑𝐷𝑉 )
Assertion uppropd ( 𝜑 → ( 𝐴 UP 𝐶 ) = ( 𝐵 UP 𝐷 ) )

Proof

Step Hyp Ref Expression
1 uppropd.1 ( 𝜑 → ( Homf𝐴 ) = ( Homf𝐵 ) )
2 uppropd.2 ( 𝜑 → ( compf𝐴 ) = ( compf𝐵 ) )
3 uppropd.3 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
4 uppropd.4 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
5 uppropd.a ( 𝜑𝐴𝑉 )
6 uppropd.b ( 𝜑𝐵𝑉 )
7 uppropd.c ( 𝜑𝐶𝑉 )
8 uppropd.d ( 𝜑𝐷𝑉 )
9 1 2 3 4 5 6 7 8 funcpropd ( 𝜑 → ( 𝐴 Func 𝐶 ) = ( 𝐵 Func 𝐷 ) )
10 3 homfeqbas ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) )
11 10 adantr ( ( 𝜑𝑓 ∈ ( 𝐴 Func 𝐶 ) ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) )
12 1 homfeqbas ( 𝜑 → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) )
13 12 adantr ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) )
14 13 adantr ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) )
15 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
16 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
17 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
18 3 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( Homf𝐶 ) = ( Homf𝐷 ) )
19 simprr ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) )
20 19 ad2antrr ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) )
21 eqid ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 )
22 simprl ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑓 ∈ ( 𝐴 Func 𝐶 ) )
23 22 func1st2nd ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st𝑓 ) ( 𝐴 Func 𝐶 ) ( 2nd𝑓 ) )
24 21 15 23 funcf1 ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st𝑓 ) : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) )
25 24 adantr ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) → ( 1st𝑓 ) : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) )
26 25 ffvelcdmda ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( ( 1st𝑓 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐶 ) )
27 15 16 17 18 20 26 homfeqval ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) = ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) )
28 eqid ( Hom ‘ 𝐴 ) = ( Hom ‘ 𝐴 )
29 eqid ( Hom ‘ 𝐵 ) = ( Hom ‘ 𝐵 )
30 1 ad4antr ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ) → ( Homf𝐴 ) = ( Homf𝐵 ) )
31 simprl ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) → 𝑥 ∈ ( Base ‘ 𝐴 ) )
32 31 ad2antrr ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐴 ) )
33 simplr ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐴 ) )
34 21 28 29 30 32 33 homfeqval ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ) → ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) )
35 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
36 eqid ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 )
37 18 ad2antrr ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( Homf𝐶 ) = ( Homf𝐷 ) )
38 4 ad5antr ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( compf𝐶 ) = ( compf𝐷 ) )
39 20 ad2antrr ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) )
40 24 ffvelcdmda ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( 1st𝑓 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐶 ) )
41 40 adantrr ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) → ( ( 1st𝑓 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐶 ) )
42 41 ad3antrrr ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ( 1st𝑓 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐶 ) )
43 26 ad2antrr ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ( 1st𝑓 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐶 ) )
44 simprr ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) → 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) )
45 44 ad3antrrr ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) )
46 23 ad3antrrr ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ) → ( 1st𝑓 ) ( 𝐴 Func 𝐶 ) ( 2nd𝑓 ) )
47 21 28 16 46 32 33 funcf2 ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ) → ( 𝑥 ( 2nd𝑓 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ⟶ ( ( ( 1st𝑓 ) ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) )
48 47 ffvelcdmda ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ∈ ( ( ( 1st𝑓 ) ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) )
49 15 16 35 36 37 38 39 42 43 45 48 comfeqval ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) )
50 49 eqeq2d ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑔 = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ↔ 𝑔 = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) )
51 34 50 reueqbidva ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ) → ( ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ↔ ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) )
52 27 51 raleqbidva ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ↔ ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) )
53 14 52 raleqbidva ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) )
54 53 pm5.32da ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) ) )
55 3 ad2antrr ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( Homf𝐶 ) = ( Homf𝐷 ) )
56 simplrr ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) )
57 15 16 17 55 56 40 homfeqval ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) = ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) )
58 57 eleq2d ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ↔ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) )
59 58 pm5.32da ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) )
60 13 eleq2d ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ∈ ( Base ‘ 𝐴 ) ↔ 𝑥 ∈ ( Base ‘ 𝐵 ) ) )
61 60 anbi1d ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) )
62 59 61 bitrd ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ) )
63 62 anbi1d ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐵 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) ) )
64 54 63 bitrd ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐵 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) ) )
65 64 opabbidv ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → { ⟨ 𝑥 , 𝑚 ⟩ ∣ ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) } = { ⟨ 𝑥 , 𝑚 ⟩ ∣ ( ( 𝑥 ∈ ( Base ‘ 𝐵 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) } )
66 9 11 65 mpoeq123dva ( 𝜑 → ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ { ⟨ 𝑥 , 𝑚 ⟩ ∣ ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) } ) = ( 𝑓 ∈ ( 𝐵 Func 𝐷 ) , 𝑤 ∈ ( Base ‘ 𝐷 ) ↦ { ⟨ 𝑥 , 𝑚 ⟩ ∣ ( ( 𝑥 ∈ ( Base ‘ 𝐵 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) } ) )
67 21 15 28 16 35 upfval ( 𝐴 UP 𝐶 ) = ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ { ⟨ 𝑥 , 𝑚 ⟩ ∣ ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) } )
68 eqid ( Base ‘ 𝐵 ) = ( Base ‘ 𝐵 )
69 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
70 68 69 29 17 36 upfval ( 𝐵 UP 𝐷 ) = ( 𝑓 ∈ ( 𝐵 Func 𝐷 ) , 𝑤 ∈ ( Base ‘ 𝐷 ) ↦ { ⟨ 𝑥 , 𝑚 ⟩ ∣ ( ( 𝑥 ∈ ( Base ‘ 𝐵 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ 𝑘 ) ( ⟨ 𝑤 , ( ( 1st𝑓 ) ‘ 𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) } )
71 66 67 70 3eqtr4g ( 𝜑 → ( 𝐴 UP 𝐶 ) = ( 𝐵 UP 𝐷 ) )