| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uppropd.1 |
⊢ ( 𝜑 → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |
| 2 |
|
uppropd.2 |
⊢ ( 𝜑 → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) |
| 3 |
|
uppropd.3 |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 4 |
|
uppropd.4 |
⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 5 |
|
uppropd.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 6 |
|
uppropd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
| 7 |
|
uppropd.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 8 |
|
uppropd.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 9 |
1 2 3 4 5 6 7 8
|
funcpropd |
⊢ ( 𝜑 → ( 𝐴 Func 𝐶 ) = ( 𝐵 Func 𝐷 ) ) |
| 10 |
3
|
homfeqbas |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 Func 𝐶 ) ) → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 12 |
1
|
homfeqbas |
⊢ ( 𝜑 → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
| 14 |
13
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 16 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 17 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
| 18 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 19 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) ) |
| 20 |
19
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) ) |
| 21 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 22 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑓 ∈ ( 𝐴 Func 𝐶 ) ) |
| 23 |
22
|
func1st2nd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st ‘ 𝑓 ) ( 𝐴 Func 𝐶 ) ( 2nd ‘ 𝑓 ) ) |
| 24 |
21 15 23
|
funcf1 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st ‘ 𝑓 ) : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) |
| 25 |
24
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) → ( 1st ‘ 𝑓 ) : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) |
| 26 |
25
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐶 ) ) |
| 27 |
15 16 17 18 20 26
|
homfeqval |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) = ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) |
| 28 |
|
eqid |
⊢ ( Hom ‘ 𝐴 ) = ( Hom ‘ 𝐴 ) |
| 29 |
|
eqid |
⊢ ( Hom ‘ 𝐵 ) = ( Hom ‘ 𝐵 ) |
| 30 |
1
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |
| 31 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) → 𝑥 ∈ ( Base ‘ 𝐴 ) ) |
| 32 |
31
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐴 ) ) |
| 33 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐴 ) ) |
| 34 |
21 28 29 30 32 33
|
homfeqval |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) → ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ) |
| 35 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
| 36 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
| 37 |
18
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 38 |
4
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 39 |
20
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) ) |
| 40 |
24
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐶 ) ) |
| 41 |
40
|
adantrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) → ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐶 ) ) |
| 42 |
41
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐶 ) ) |
| 43 |
26
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐶 ) ) |
| 44 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) → 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) |
| 45 |
44
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) |
| 46 |
23
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) → ( 1st ‘ 𝑓 ) ( 𝐴 Func 𝐶 ) ( 2nd ‘ 𝑓 ) ) |
| 47 |
21 28 16 46 32 33
|
funcf2 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) → ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ⟶ ( ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) |
| 48 |
47
|
ffvelcdmda |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ∈ ( ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) |
| 49 |
15 16 35 36 37 38 39 42 43 45 48
|
comfeqval |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) |
| 50 |
49
|
eqeq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) ∧ 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ↔ 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) ) |
| 51 |
34 50
|
reueqbidva |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ) → ( ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ↔ ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) ) |
| 52 |
27 51
|
raleqbidva |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ↔ ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) ) |
| 53 |
14 52
|
raleqbidva |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) ) |
| 54 |
53
|
pm5.32da |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) ) ) |
| 55 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 56 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) ) |
| 57 |
15 16 17 55 56 40
|
homfeqval |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) = ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) |
| 58 |
57
|
eleq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ↔ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) |
| 59 |
58
|
pm5.32da |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ) |
| 60 |
13
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ∈ ( Base ‘ 𝐴 ) ↔ 𝑥 ∈ ( Base ‘ 𝐵 ) ) ) |
| 61 |
60
|
anbi1d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ) |
| 62 |
59 61
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐵 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ) ) |
| 63 |
62
|
anbi1d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐵 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) ) ) |
| 64 |
54 63
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐵 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) ) ) |
| 65 |
64
|
opabbidv |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ) → { 〈 𝑥 , 𝑚 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) } = { 〈 𝑥 , 𝑚 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝐵 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) } ) |
| 66 |
9 11 65
|
mpoeq123dva |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ { 〈 𝑥 , 𝑚 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) } ) = ( 𝑓 ∈ ( 𝐵 Func 𝐷 ) , 𝑤 ∈ ( Base ‘ 𝐷 ) ↦ { 〈 𝑥 , 𝑚 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝐵 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) } ) ) |
| 67 |
21 15 28 16 35
|
upfval |
⊢ ( 𝐴 UP 𝐶 ) = ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) , 𝑤 ∈ ( Base ‘ 𝐶 ) ↦ { 〈 𝑥 , 𝑚 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) } ) |
| 68 |
|
eqid |
⊢ ( Base ‘ 𝐵 ) = ( Base ‘ 𝐵 ) |
| 69 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 70 |
68 69 29 17 36
|
upfval |
⊢ ( 𝐵 UP 𝐷 ) = ( 𝑓 ∈ ( 𝐵 Func 𝐷 ) , 𝑤 ∈ ( Base ‘ 𝐷 ) ↦ { 〈 𝑥 , 𝑚 〉 ∣ ( ( 𝑥 ∈ ( Base ‘ 𝐵 ) ∧ 𝑚 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑔 ∈ ( 𝑤 ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑤 , ( ( 1st ‘ 𝑓 ) ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑓 ) ‘ 𝑦 ) ) 𝑚 ) ) } ) |
| 71 |
66 67 70
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝐴 UP 𝐶 ) = ( 𝐵 UP 𝐷 ) ) |