Metamath Proof Explorer


Theorem reueqbidva

Description: Formula-building rule for restricted existential uniqueness quantifier. Deduction form. General version of reueqbidv . (Contributed by Zhi Wang, 20-Nov-2025)

Ref Expression
Hypotheses reueqbidva.1 ( 𝜑𝐴 = 𝐵 )
reueqbidva.2 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
Assertion reueqbidva ( 𝜑 → ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑥𝐵 𝜒 ) )

Proof

Step Hyp Ref Expression
1 reueqbidva.1 ( 𝜑𝐴 = 𝐵 )
2 reueqbidva.2 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
3 2 reubidva ( 𝜑 → ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑥𝐴 𝜒 ) )
4 1 reueqdv ( 𝜑 → ( ∃! 𝑥𝐴 𝜒 ↔ ∃! 𝑥𝐵 𝜒 ) )
5 3 4 bitrd ( 𝜑 → ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑥𝐵 𝜒 ) )