Description: Formula-building rule for restricted existential uniqueness quantifier. Deduction form. General version of reueqbidv . (Contributed by Zhi Wang, 20-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reueqbidva.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| reueqbidva.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | reueqbidva | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑥 ∈ 𝐵 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reueqbidva.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | reueqbidva.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | 2 | reubidva | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑥 ∈ 𝐴 𝜒 ) ) |
| 4 | 1 | reueqdv | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐴 𝜒 ↔ ∃! 𝑥 ∈ 𝐵 𝜒 ) ) |
| 5 | 3 4 | bitrd | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑥 ∈ 𝐵 𝜒 ) ) |