Metamath Proof Explorer
Description: Formula-building rule for restricted existential uniqueness quantifier.
Deduction form. (Contributed by GG, 1-Sep-2025)
|
|
Ref |
Expression |
|
Hypothesis |
reueqdv.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
|
Assertion |
reueqdv |
⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
reueqdv.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
2 |
|
reueq1 |
⊢ ( 𝐴 = 𝐵 → ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) |
3 |
1 2
|
syl |
⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) |