Metamath Proof Explorer


Theorem reueqdv

Description: Formula-building rule for restricted existential uniqueness quantifier. Deduction form. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypothesis reueqdv.1 ( 𝜑𝐴 = 𝐵 )
Assertion reueqdv ( 𝜑 → ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑥𝐵 𝜓 ) )

Proof

Step Hyp Ref Expression
1 reueqdv.1 ( 𝜑𝐴 = 𝐵 )
2 reueq1 ( 𝐴 = 𝐵 → ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑥𝐵 𝜓 ) )
3 1 2 syl ( 𝜑 → ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑥𝐵 𝜓 ) )