Metamath Proof Explorer


Theorem reueqdv

Description: Formula-building rule for restricted existential uniqueness quantifier. Deduction form. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypothesis reueqdv.1
|- ( ph -> A = B )
Assertion reueqdv
|- ( ph -> ( E! x e. A ps <-> E! x e. B ps ) )

Proof

Step Hyp Ref Expression
1 reueqdv.1
 |-  ( ph -> A = B )
2 reueq1
 |-  ( A = B -> ( E! x e. A ps <-> E! x e. B ps ) )
3 1 2 syl
 |-  ( ph -> ( E! x e. A ps <-> E! x e. B ps ) )