Metamath Proof Explorer


Theorem reueqdv

Description: Formula-building rule for restricted existential uniqueness quantifier. Deduction form. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypothesis reueqdv.1 φ A = B
Assertion reueqdv φ ∃! x A ψ ∃! x B ψ

Proof

Step Hyp Ref Expression
1 reueqdv.1 φ A = B
2 reueq1 A = B ∃! x A ψ ∃! x B ψ
3 1 2 syl φ ∃! x A ψ ∃! x B ψ