Metamath Proof Explorer


Theorem reueq1

Description: Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004) Remove usage of ax-10 , ax-11 , and ax-12 . (Revised by Steven Nguyen, 30-Apr-2023)

Ref Expression
Assertion reueq1 ( 𝐴 = 𝐵 → ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑥𝐵 𝜑 ) )

Proof

Step Hyp Ref Expression
1 eleq2 ( 𝐴 = 𝐵 → ( 𝑥𝐴𝑥𝐵 ) )
2 1 anbi1d ( 𝐴 = 𝐵 → ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑥𝐵𝜑 ) ) )
3 2 eubidv ( 𝐴 = 𝐵 → ( ∃! 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∃! 𝑥 ( 𝑥𝐵𝜑 ) ) )
4 df-reu ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥𝐴𝜑 ) )
5 df-reu ( ∃! 𝑥𝐵 𝜑 ↔ ∃! 𝑥 ( 𝑥𝐵𝜑 ) )
6 3 4 5 3bitr4g ( 𝐴 = 𝐵 → ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑥𝐵 𝜑 ) )