Metamath Proof Explorer


Theorem reueqbidva

Description: Formula-building rule for restricted existential uniqueness quantifier. Deduction form. General version of reueqbidv . (Contributed by Zhi Wang, 20-Nov-2025)

Ref Expression
Hypotheses reueqbidva.1
|- ( ph -> A = B )
reueqbidva.2
|- ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
Assertion reueqbidva
|- ( ph -> ( E! x e. A ps <-> E! x e. B ch ) )

Proof

Step Hyp Ref Expression
1 reueqbidva.1
 |-  ( ph -> A = B )
2 reueqbidva.2
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
3 2 reubidva
 |-  ( ph -> ( E! x e. A ps <-> E! x e. A ch ) )
4 1 reueqdv
 |-  ( ph -> ( E! x e. A ch <-> E! x e. B ch ) )
5 3 4 bitrd
 |-  ( ph -> ( E! x e. A ps <-> E! x e. B ch ) )