Description: The domain of ( D UP E ) is a relation. (Contributed by Zhi Wang, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reldmup2 | |- Rel dom ( D UP E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 2 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
| 3 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 4 | eqid | |- ( Hom ` E ) = ( Hom ` E ) |
|
| 5 | eqid | |- ( comp ` E ) = ( comp ` E ) |
|
| 6 | 1 2 3 4 5 | upfval | |- ( D UP E ) = ( f e. ( D Func E ) , w e. ( Base ` E ) |-> { <. x , m >. | ( ( x e. ( Base ` D ) /\ m e. ( w ( Hom ` E ) ( ( 1st ` f ) ` x ) ) ) /\ A. y e. ( Base ` D ) A. g e. ( w ( Hom ` E ) ( ( 1st ` f ) ` y ) ) E! k e. ( x ( Hom ` D ) y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. ( comp ` E ) ( ( 1st ` f ) ` y ) ) m ) ) } ) |
| 7 | 6 | reldmmpo | |- Rel dom ( D UP E ) |